skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The North American Monsoon buffers forests against the ongoing megadrought in the Southwestern United States
Abstract The US Southwest has been entrenched in a two‐decade‐long megadrought (MD), the most severe since 800 CE, which threatens the long‐term vitality and persistence of regional montane forests. Here, we report that in the face of record low winter precipitation and increasing atmospheric aridity, seasonal activity of the North American Monsoon (NAM) climate system brings sufficient precipitation during the height of the summer to alleviate extreme tree water stress. We studied seasonally resolved, tree‐ring stable carbon isotope ratios across a 57‐year time series (1960–2017) in 17 Ponderosa pine forests distributed across the NAM geographic domain. Our study focused on the isotope dynamics of latewood (LW), which is produced in association with NAM rains. During the MD, populations growing within the core region of the NAM operated at lower intrinsic and higher evaporative water‐use efficiencies (WUEiand WUEE, respectively), compared to populations growing in the periphery of the NAM domain, indicating less physiological water stress in those populations with access to NAM moisture. The disparities in water‐use efficiencies in periphery populations are due to a higher atmospheric vapor pressure deficit (VPD) and reduced access to summer soil moisture. The buffering advantage of the NAM, however, is weakening. We observed that since the MD, the relationship between WUEiand WUEEin forests within the core NAM domain is shifting toward a drought response similar to forests on the periphery of the NAM. After correcting for past increases in the atmospheric CO2concentration, we were able to isolate the LW time‐series responses to climate alone. This showed that the shift in the relation between WUEiand WUEEwas driven by the extreme increases in MD‐associated VPD, with little advantageous influence on stomatal conductance from increases in atmospheric CO2concentration.  more » « less
Award ID(s):
1754430
PAR ID:
10421021
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
29
Issue:
15
ISSN:
1354-1013
Format(s):
Medium: X Size: p. 4354-4367
Size(s):
p. 4354-4367
Sponsoring Org:
National Science Foundation
More Like this
  1. Multiple lines of evidence suggest that plant water-use efficiency (WUE)—the ratio of carbon assimilation to water loss—has increased in recent decades. Although rising atmospheric CO 2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystem-scale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO 2 -induced reductions in stomatal conductance. 
    more » « less
  2. Abstract Tree‐ring carbon and oxygen isotope ratios have been used to understand past dynamics in forest carbon and water cycling. Recently, this has been possible for different parts of single growing seasons by isolating anatomical sections within individual annual rings. Uncertainties in this approach are associated with correlated climate legacies that can occur at a higher frequency, such as across successive seasons, or a lower frequency, such as across years. The objective of this study was to gain insight into how legacies affect cross‐correlation in the δ13C and δ18O isotope ratios in the earlywood (EW) and latewood (LW) fractions ofPinus ponderosatrees at thirteen sites across a latitudinal gradient influenced by the North American Monsoon (NAM) climate system. We observed that δ13C from EW and LW has significant positive cross‐correlations at most sites, whereas EW and LW δ18O values were cross‐correlated at about half the sites. Using combined statistical and mechanistic models, we show that cross‐correlations in both δ13C and δ18O can be largely explained by a low‐frequency (multiple‐year) mode that may be associated with long‐term climate change. We isolated, and statistically removed, the low‐frequency correlation, which resulted in greater geographical differentiation of the EW and LW isotope signals. The remaining higher‐frequency (seasonal) cross‐correlations between EW and LW isotope ratios were explored using a mechanistic isotope fractionation–climate model. This showed that lower atmospheric vapor pressure deficits associated with monsoon rain increase the EW‐LW differentiation for both δ13C and δ18O at southern sites, compared to northern sites. Our results support the hypothesis that dominantly unimodal precipitation regimes, such as near the northern boundary of the NAM, are more likely to foster cross‐correlations in the isotope signals of EW and LW, potentially due to greater sharing of common carbohydrate and soil water resource pools, compared to southerly sites with bimodal precipitation regimes. 
    more » « less
  3. Abstract On seasonal time scales, vapor pressure deficit (VPD) is a known predictor of burned area in the southwestern United States (“the Southwest”). VPD increases with atmospheric warming due to the exponential relationship between temperature and saturation vapor pressure. Another control on VPD is specific humidity, such that increases in specific humidity can counteract temperature-driven increases in VPD. Unexpectedly, despite the increased capacity of a warmer atmosphere to hold water vapor, near-surface specific humidity decreased from 1970 to 2019 in much of the Southwest, particularly in spring, summer, and fall. Here, we identify declining near-surface humidity from 1970 to 2019 in the southwestern United States with both reanalysis and in situ station data. Focusing on the interior Southwest in the months preceding the summer forest fire season, we explain the decline in terms of changes in atmospheric circulation and moisture fluxes between the surface and the atmosphere. We find that an early spring decline in precipitation in the interior region induced a decline in soil moisture and evapotranspiration, drying the lower troposphere in summer. This prior season precipitation decline is in turn related to a trend toward a Northern Hemisphere stationary wave pattern. Finally, using fixed humidity scenarios and the observed exponential relationship between VPD and burned forest area, we estimate that with no increase in temperature at all, the humidity decline alone would still lead to nearly one-quarter of the observed VPD-induced increase in burned area over 1984–2019. Significance StatementBurned forest area has increased significantly in the southwestern United States in recent decades, driven in part by an increase in atmospheric aridity [vapor pressure deficit (VPD)]. Increases in VPD can be caused by a combination of increasing temperature and decreasing specific humidity. As the atmosphere warms with climate change, its capacity to hold moisture increases. Despite this, there is a decrease in near-surface air humidity in the interior southwestern United States over 1970–2019, which during the summer is likely caused by a decline in early spring precipitation leading to limited soil moisture and evaporation in spring and summer. We estimate that this declining humidity alone, without an increase in temperature, would cause about one-quarter of the VPD-induced increase in burned forest area in this region over 1984–2019. 
    more » « less
  4. Abstract Popular evapotranspiration (ET) partitioning methods make assumptions that might not be well‐suited to dryland ecosystems, such as high sensitivity of plant water‐use efficiency (WUE) to vapor pressure deficit (VPD). Our objectives were to (a) create an ET partitioning model that can produce fine‐scale estimates of transpiration (T) in drylands, and (b) use this approach to evaluate how climate controls T and WUE across ecosystem types and timescales along a dryland aridity gradient. We developed a novel, semi‐mechanistic ET partitioning method using a Bayesian approach that constrains abiotic evaporation using process‐based models, and loosely constrains time‐varying WUE within an autoregressive framework. We used this method to estimate daily T and weekly WUE across seven dryland ecosystem types and found that T dominates ET across the aridity gradient. Then, we applied cross‐wavelet coherence analysis to evaluate the temporal coherence between focal response variables (WUE and T/ET) and environmental variables. At yearly scales, we found that WUE at less arid, higher elevation sites was primarily limited by atmospheric moisture demand, and WUE at more arid, lower elevation sites was primarily limited by moisture supply. At sub‐yearly timescales, WUE and VPD were sporadically correlated. Hence, ecosystem‐scale dryland WUE is not always sensitive to changes in VPD at short timescales, despite this being a common assumption in many ET partitioning models. This new ET partitioning method can be used in dryland ecosystems to better understand how climate influences physically and biologically driven water fluxes. 
    more » « less
  5. Abstract Much is still unknown about the growth and physiological responses of trees to global change at the northern treeline. We combined tree‐ring width data with century‐long stable carbon and oxygen isotope records to investigate growth and physiological responses of white spruce at two treeline sites in the Canadian Arctic to concurrent increases in temperature, atmospheric CO2concentration (ca), and decline in sea ice extent over the past century. The tree‐ring records were assessed during three periods with contrasting climatic conditions: (a) the early 20th century warming, (b) the 1940–1970 cooling period, and (c) the anthropogenic late 20th century warming period. We found opposing growth trends between the two sites, but similar carbon isotope discrimination (Δ13C) and intrinsic water‐use efficiency (iWUE) trajectories. While tree growth (defined as basal area increment) increased at the site nearer to the Arctic Ocean during the 20th century following the rise in temperature and sea ice loss, growth declined after 1950 at the more interior site. At both sites, Δ13C slightly increased over these periods. However, trees showed a nonlinear response to increasedca, shifting after 1970 from a passive stomatal response (i.e., no changes iniWUE) to an active response (i.e., a moderate ∼12% increase iniWUE). Further, our isotope‐based findings do not support the idea that temperature‐induced drought stress caused the divergent growth trends at our treeline sites. This study thus highlights nonlinear and complex physiological and growth adjustments to concomitant changes in temperature, sea ice extent, andcaover the last century at the northern treeline. 
    more » « less