skip to main content


Title: Chemodynamical properties and ages of metal-poor stars in S-PLUS
ABSTRACT

Metal-poor stars are key to our understanding of the early stages of chemical evolution in the Universe. New multifilter surveys, such as the Southern Photometric Local Universe Survey (S-PLUS), are greatly advancing our ability to select low-metallicity stars. In this work, we analyse the chemodynamical properties and ages of 522 metal-poor candidates selected from the S-PLUS data release 3. About 92 per cent of these stars were confirmed to be metal-poor ([Fe/H] ≤ −1) based on previous medium-resolution spectroscopy. We calculated the dynamical properties of a subsample containing 241 stars, using the astrometry from Gaia Data Release 3. Stellar ages are estimated by a Bayesian isochronal method formalized in this work. We analyse the metallicity distribution of these metal-poor candidates separated into different subgroups of total velocity, dynamical properties, and ages. Our results are used to propose further restrictions to optimize the selection of metal-poor candidates in S-PLUS. The proposed astrometric selection (parallax >0.85 mas) is the one that returns the highest fraction of extremely metal-poor stars (16.3 per cent have [Fe/H] ≤ −3); the combined selection provides the highest fraction of very metal-poor stars (91.0 per cent have [Fe/H] ≤ −2), whereas the dynamical selection (eccentricity >0.35 and discness < 0.75) is better for targeting metal-poor (99.5 per cent have [Fe/H] ≤ −1). Using only S-PLUS photometric selections, it is possible to achieve selection fractions of 15.6, 88.5, and 98.3 per cent for metallicities below −3, −2, and −1, respectively. We also show that it is possible to use S-PLUS to target metal-poor stars in halo substructures such as Gaia-Sausage/Enceladus, Sequoia, Thamnos, and the Helmi stream.

 
more » « less
NSF-PAR ID:
10421029
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
523
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2934-2951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present and discuss the results of a search for extremely metal-poor stars based on photometry from data release DR1.1 of the SkyMapper imaging survey of the southern sky. In particular, we outline our photometric selection procedures and describe the low-resolution (R ≈ 3000) spectroscopic follow-up observations that are used to provide estimates of effective temperature, surface gravity, and metallicity ([Fe/H]) for the candidates. The selection process is very efficient: of the 2618 candidates with low-resolution spectra that have photometric metallicity estimates less than or equal to −2.0, 41 per cent have [Fe/H] ≤ −2.75 and only approximately seven per cent have [Fe/H] > −2.0 dex. The most metal-poor candidate in the sample has [Fe/H] < −4.75 and is notably carbon rich. Except at the lowest metallicities ([Fe/H] < −4), the stars observed spectroscopically are dominated by a ‘carbon-normal’ population with [C/Fe]1D, LTE ≤ +1 dex. Consideration of the A(C)1D, LTE versus [Fe/H]1D, LTE diagram suggests that the current selection process is strongly biased against stars with A(C)1D, LTE > 7.3 (predominantly CEMP-s) while any bias against stars with A(C)1D, LTE < 7.3 and [C/Fe]1D,LTE > +1 (predominantly CEMP-no) is not readily quantifiable given the uncertainty in the SkyMapper v-band DR1.1 photometry. We find that the metallicity distribution function of the observed sample has a power-law slope of Δ(Log N)/Δ[Fe/H] = 1.5 ± 0.1 dex per dex for −4.0 ≤ [Fe/H] ≤ −2.75, but appears to drop abruptly at [Fe/H] ≈ −4.2, in line with previous studies. 
    more » « less
  2. ABSTRACT

    We present a new spectroscopic study of the dwarf galaxy Boötes I (Boo I) with data from the Anglo-Australian Telescope and its AAOmega spectrograph together with the Two Degree Field multi-object system. We observed 36 high-probability Boo I stars selected using Gaia Early Data Release 3 proper motions and photometric metallicities from the Pristine survey. Out of those, 27 are found to be Boo I stars, resulting in an excellent success rate of 75 per cent at finding new members. Our analysis uses a new pipeline developed to estimate radial velocities and equivalent widths of the calcium triplet lines from Gaussian and Voigt line profile fits. The metallicities of 16 members are derived, including 3 extremely metal-poor stars ([Fe/H] < −3.0), which translates into a success rate of 25 per cent at finding them with the combination of Pristine and Gaia. Using the large spatial extent of our new members that spans up to 4.1 half-light radii and spectroscopy from the literature, we find a systemic velocity gradient of 0.40 ± 0.10 km s−1 arcmin−1 and a small but resolved metallicity gradient of −0.008 ± 0.003 dex arcmin−1. Finally, we show that Boo I is more elongated than previously thought with an ellipticity of ϵ = 0.68 ± 0.15. Its velocity and metallicity gradients as well as its elongation suggest that Boo I may have been affected by tides, a result supported by direct dynamical modelling.

     
    more » « less
  3. null (Ed.)
    ABSTRACT Stellar and supernova nucleosynthesis in the first few billion years of the cosmic history have set the scene for early structure formation in the Universe, while little is known about their nature. Making use of stellar physical parameters measured by GALAH Data Release 3 with accurate astrometry from the Gaia EDR3, we have selected ∼100 old main-sequence turn-off stars (ages ≳12 Gyr) with kinematics compatible with the Milky Way stellar halo population in the Solar neighbourhood. Detailed homogeneous elemental abundance estimates by GALAH DR3 are compared with supernova yield models of Pop III (zero-metal) core-collapse supernovae (CCSNe), normal (non-zero-metal) CCSNe, and Type Ia supernovae (SN Ia) to examine which of the individual yields or their combinations best reproduce the observed elemental abundance patterns for each of the old halo stars (‘OHS’). We find that the observed abundances in the OHS with [Fe/H] > −1.5 are best explained by contributions from both CCSNe and SN Ia, where the fraction of SN Ia among all the metal-enriching SNe is up to 10–20 per cent for stars with high [Mg/Fe] ratios and up to 20–27 per cent for stars with low [Mg/Fe] ratios, depending on the assumption about the relative fraction of near-Chandrasekhar-mass SNe Ia progenitors. The results suggest that, in the progenitor systems of the OHS with [Fe/H] > −1.5, ∼ 50–60 per cent of Fe mass originated from normal CCSNe at the earliest phases of the Milky Way formation. These results provide an insight into the birth environments of the oldest stars in the Galactic halo. 
    more » « less
  4. null (Ed.)
    ABSTRACT In this work, we combine spectroscopic information from the SkyMapper survey for Extremely Metal-Poor stars and astrometry from Gaia DR2 to investigate the kinematics of a sample of 475 stars with a metallicity range of $-6.5 \le \rm [Fe/H] \le -2.05$ dex. Exploiting the action map, we identify 16 and 40 stars dynamically consistent with the Gaia Sausage and Gaia Sequoia accretion events, respectively. The most metal poor of these candidates have metallicities of $\rm [Fe/H]=-3.31\, \mathrm{ and }\, -3.74$, respectively, helping to define the low-metallicity tail of the progenitors involved in the accretion events. We also find, consistent with other studies, that ∼21 per cent of the sample have orbits that remain confined to within 3 kpc of the Galactic plane, that is, |Zmax| ≤ 3 kpc. Of particular interest is a subsample (∼11 per cent of the total) of low |Zmax| stars with low eccentricities and prograde motions. The lowest metallicity of these stars has [Fe/H] = –4.30 and the subsample is best interpreted as the very low-metallicity tail of the metal-weak thick disc population. The low |Zmax|, low eccentricity stars with retrograde orbits are likely accreted, while the low |Zmax|, high eccentricity pro- and retrograde stars are plausibly associated with the Gaia Sausage system. We find that a small fraction of our sample (∼4 per cent of the total) is likely escaping from the Galaxy, and postulate that these stars have gained energy from gravitational interactions that occur when infalling dwarf galaxies are tidally disrupted. 
    more » « less
  5. Abstract

    Orbital characteristics based on Gaia Early Data Release 3 astrometric parameters are analyzed for ∼4000 metal-poor stars ([Fe/H] ≤ −0.8) compiled from the Best and Brightest survey. Selected as metal-poor candidates based on broadband near- and far-IR photometry, 43% of these stars had medium-resolution (1200 ≲R≲ 2000) validation spectra obtained over a 7 yr campaign from 2014 to 2020 with a variety of telescopes. The remaining stars were chosen based on photometric metallicity determinations from the Huang et al. recalibration of the Sky Mapper Southern Survey. Dynamical clusters of these stars are obtained from the orbital energy and cylindrical actions using theHDBSCANunsupervised learning algorithm. We identify 52 dynamically tagged groups (DTGs) with between five and 21 members; 18 DTGs have at least 10 member stars. Milky Way (MW) substructures such as Gaia-Sausage-Enceladus, the Metal-Weak Thick-Disk, Thamnos, the Splashed Disk, and the Helmi Stream are identified. Associations with MW globular clusters are determined for eight DTGs; no recognized MW dwarf galaxies were associated with any of our DTGs. Previously identified dynamical groups are also associated with our DTGs, with emphasis placed on their structural determination and possible new identifications. Chemically peculiar stars are identified as members of several DTGs, with six DTGs that are associated withr-process-enhanced stars. We demonstrate that the mean carbon andα-element abundances of our DTGs are correlated with their mean metallicity in an understandable manner. Similarly, we find that the mean metallicity, carbon, andα-element abundances are separable into different regions of the mean rotational-velocity space.

     
    more » « less