skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local and landscape scale woodland cover and diversification of agroecological practices shape butterfly communities in tropical smallholder landscapes
Abstract The conversion of biodiversity‐rich woodland to farmland and subsequent management has strong, often negative, impacts on biodiversity. In tropical smallholder agricultural landscapes, the impacts of agriculture on insect communities, both through habitat change and subsequent farmland management, is understudied. The use of agroecological practices has social and agronomic benefits for smallholders. Although ecological co‐benefits of agroecological practices are assumed, systematic empirical assessments of biodiversity effects of agroecological practices are missing, particularly in Africa.In Malawi, we assessed butterfly abundance, species richness, species assemblages and community life‐history traits on 24 paired woodland and smallholder‐managed farmland sites located across a gradient of woodland cover within a 1 km radius. We tested whether habitat type (woodland vs. farmland) and woodland cover at the landscape scale interactively shaped butterfly communities. Farms varied in the implementation of agroecological pest and soil management practices and flowering plant species richness.Farmland had lower butterfly abundances and approximately half the species richness than woodland. Farmland butterfly communities had, on average, a larger wingspan than woodland site communities. Surprisingly, higher woodland cover in the landscape had no effect on butterfly abundance in both habitats. In contrast, species richness was higher with higher woodland cover. Butterfly species assemblages were distinct between wood‐ and farmland and shifted across the woodland cover gradient.Farmland butterfly abundance, but not species richness, was higher with higher flowering plant species richness on farms. Farms with a higher number of agroecological pest management practices had a lower abundance of the dominant butterfly species, but not of rarer species. However, a larger number of agroecological soil management practices was associated with a higher abundance of rarer species.Synthesis and applications: We show that diversified agroecological soil practices and flowering plant richness enhanced butterfly abundance on farms. However, our results suggest that on‐farm measures cannot compensate for the negative effects of continued woodland conversion. Therefore, we call for more active protection of remaining African woodlands in tandem with promoting agroecological soil management practices and on‐farm flowering plant richness to conserve butterflies while benefiting smallholders.  more » « less
Award ID(s):
1852587
PAR ID:
10421074
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
60
Issue:
8
ISSN:
0021-8901
Page Range / eLocation ID:
p. 1659-1672
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the tropics, smallholder farming characterizes some of the world's most biodiverse landscapes. Agroecology as a pathway to sustainable agriculture has been proposed and implemented in sub‐Saharan Africa, but the effects of agricultural practices in smallholder agriculture on biodiversity and ecosystem services are understudied. Similarly, the contribution of different landscape elements, such as shrubland or grassland cover, on biodiversity and ecosystem services to fields remains unknown.We selected 24 villages situated in landscapes with varying shrubland and grassland cover in Malawi. In each village, we assessed biodiversity of eight taxa and ecosystem services in relation to crop type, shrubland and grassland cover and the number of agroecological pest and soil management practices on smallholder's fields of different crop types (bean monoculture, maize‐bean intercrop and maize monoculture).Increasing shrubland cover altered carabid and soil bacteria communities. Carabid abundance increased in maize but decreased in intercrop and bean fields with increasing shrubland cover. Carabid abundance and richness and wasp abundance increased with soil management practices. Carabid, spider and parasitoid abundances were higher in bean monocultures, but this was modulated by surrounding shrubland cover. Natural enemy abundances in beans were especially high in landscapes with little shrubland, possibly leading to lower bean damage in monocultures compared to intercropped fields, whereas maize monocultures had higher damage. In maize, grassland cover and pest management practices were positively related to damage. Carabid abundance was higher fields with high bean damage, and increased carabid richness in fields with high maize damage. Parasitoid abundance was negatively associated with bean damage.Synthesis and application. Our results suggest that maintaining biodiversity and ecosystem services on smallholder farms is not achievable with a ‘one size fits all’ approach but should instead be adapted to the landscape context and the priorities of smallholders. Shrubland is important to maintain carabid and soil bacterial diversity, but legume cultivation beneficial to natural enemies could complement pest management in landscapes with a low shrubland cover. An increased number of agroecological soil management practices can lead to improved pest control while the effectiveness of agroecological pest management practices needs to be re‐evaluated. 
    more » « less
  2. Land-use and local field management affect pollinators, pest damage and ultimately crop yields. Agroecology is implemented as a sustainable alternative to conventional agricultural practices, but little is known about its potential for pollination and pest management. Sub-Saharan Africa is underrepresented in studies investigating the relative importance of pests and pollinators for crop productivity and how this might be influenced by surrounding landscapes or agroecological practices. In Malawi, we selected 24 smallholder farms differing in landscape-scale shrubland cover, implementation of manual pest removal as an indicator of an agroecological pest management practice, and the number of agroecological soil practices employed at the household level, such as mulching, intercropping and soil conservation tillage. We established pumpkin plots and assessed the abundance and richness of flower visitors and damage of flowers (florivory) caused by pest herbivores on flowers. Using a full-factorial hand pollination and exclusion experiment on each plot, we investigated the relative contribution of pollination and florivory to pumpkin yield. Increasing shrubland cover decreased honeybee abundance but increased the abundance and richness of non-honeybee visitors. Manual removal of herbivores considered to be pests reduced flower visitors, whereas more agroecological soil management practices increased flower visitors. Neither shrubland cover nor agroecological management affected florivory. Pollinator limitation, but not florivory, constrained pumpkin fruit set, and increasing visitor richness decreased the relative differences between hand- and animal-pollinated flowers. We recommend improved protection of shrubland habitats and increasing agroecological soil practices to promote pollinator richness on smallholder farms. 
    more » « less
  3. Abstract Butterfly abundances are declining globally, with meta‐analysis showing a rate of −2% per year. Agriculture contributes to butterfly decline through habitat loss and degradation. Prairie strips—strips of farmland actively restored to native perennial vegetation—are a conservation practice with the potential to mitigate biodiversity loss, but their impact on butterfly biodiversity is not known.Working within a 30‐year‐old experiment that varied land use intensity, from natural areas to croplands (maize–soy–wheat rotation), we introduced prairie strips to less intensely managed crop treatments. Treatments included conservation land, biologically based (organic) row crops with prairie strips, reduced input row crops with prairie strips, no‐till row crops and conventional row crops. We measured butterfly abundance and richness: (1) within prairie strips and (2) across the gradient of land use intensity at the plot level.Butterfly abundance was higher within prairie strips than in all other treatments. Across the land use intensity gradient at the plot level, the conservation land treatment had the highest abundance, treatments with prairie strips had intermediate levels and no‐till and conventional treatments had the lowest abundances. Also across entire plots, butterfly richness increased as land use intensity decreased. Treatments with prairie strips, which also had reduced land use intensity, had distinct butterfly communities as they harboured several butterfly species that were not found in other row crop treatments.In addition to the known effects of prairie strips on ecosystem services including erosion control and increased water quality, prairie strips can increase biodiversity in multifunctional landscapes. 
    more » « less
  4. Abstract Smallholder farmers are some of the poorest and most food insecure people on Earth. Their high nutritional and economic reliance on home‐grown produce makes them particularly vulnerable to environmental stressors such as pollinator loss or climate change which threaten agricultural productivity. Improving smallholder agriculture in a way that is environmentally sustainable and resilient to climate change is a key challenge of the 21st century.Ecological intensification, whereby ecosystem services are managed to increase agricultural productivity, is a promising solution for smallholders. However, smallholder farms are complex socio‐ecological systems with a range of social, ecological and environmental factors interacting to influence ecosystem service provisioning. To truly understand the functioning of a smallholder farm and identify the most effective management options to support household food and nutrition security, a holistic, systems‐based understanding is required.In this paper, we propose a network approach to understand, visualise and model the complex interactions occurring among wild species, crops and people on smallholder farms. Specifically, we demonstrate how networks may be used to (a) identify wild species with a key role in supporting, delivering or increasing the resilience of an ecosystem service; (b) quantify the value of an ecosystem service in a way that is relevant to the food and nutrition security of smallholders; and (c) understand the social interactions that influence the management of shared ecosystem services.Using a case study based on data from rural Nepal, we demonstrate how this framework can be used to connect wild plants, pollinators and crops to key nutrients consumed by humans. This allows us to quantify the nutritional value of an ecosystem service and identify the wild plants and pollinators involved in its provision, as well as providing a framework to predict the effects of environmental change on human nutrition.Our framework identifies mechanistic links between ecosystem services and the nutrients consumed by smallholder farmers and highlights social factors that may influence the management of these services. Applying this framework to smallholder farms in a range of socio‐ecological contexts may provide new, sustainable and equitable solutions to smallholder food and nutrition security. A freePlain Language Summarycan be found within the Supporting Information of this article. 
    more » « less
  5. Abstract Ecological restoration often targets plant community recovery, but restoration success may depend on the recovery of a complex web of biotic interactions to maintain biodiversity and promote ecosystem services. Specifically, management that drives resource availability, such as seeding richness and provenance, may alter species interactions across multiple trophic levels. Using experimentally seeded prairies, we examine three key groups—plants, pollinators and goldenrod crab spiders (Misumena vatia, predators of pollinators)—to understand the effects of species richness and admixture seed sourcing of restoration seed mixtures on multitrophic interactions.Working with prairie plants, we experimentally manipulated seed mix richness and the number of seed source regions (single‐source region or admixture seed sourcing). In each experimental prairie, we surveyed floral abundance and richness, pollinator visitation and plant–M. vatiainteractions.A high richness seed mix increased floral abundance when seeds were sourced from a single geographic region, and floral abundance strongly increased pollinator visitation,M. vatiaabundance and prey capture. Seeding richness and admixture seed sourcing of the seed mixture did not affect floral species richness, but floral species richness increased pollinator visitation.Pollinators interacted with different floral communities across seeding treatments, indicating a shift in visited floral species with restoration practices.Synthesis and applications. Long‐term success in prairie restoration requires the restoration of plant–arthropod interactions. We provide evidence that seed mix richness and admixture seed sourcing affect arthropod floral associations, but effective restoration of plant–arthropod interactions should consider total floral resource availability. Incorporating a food web perspective in restoration will strengthen approaches to whole ecosystem restoration. 
    more » « less