Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The conversion of biodiversity‐rich woodland to farmland and subsequent management has strong, often negative, impacts on biodiversity. In tropical smallholder agricultural landscapes, the impacts of agriculture on insect communities, both through habitat change and subsequent farmland management, is understudied. The use of agroecological practices has social and agronomic benefits for smallholders. Although ecological co‐benefits of agroecological practices are assumed, systematic empirical assessments of biodiversity effects of agroecological practices are missing, particularly in Africa.In Malawi, we assessed butterfly abundance, species richness, species assemblages and community life‐history traits on 24 paired woodland and smallholder‐managed farmland sites located across a gradient of woodland cover within a 1 km radius. We tested whether habitat type (woodland vs. farmland) and woodland cover at the landscape scale interactively shaped butterfly communities. Farms varied in the implementation of agroecological pest and soil management practices and flowering plant species richness.Farmland had lower butterfly abundances and approximately half the species richness than woodland. Farmland butterfly communities had, on average, a larger wingspan than woodland site communities. Surprisingly, higher woodland cover in the landscape had no effect on butterfly abundance in both habitats. In contrast, species richness was higher with higher woodland cover. Butterfly species assemblages were distinct between wood‐ and farmland and shifted across the woodland cover gradient.Farmland butterfly abundance, but not species richness, was higher with higher flowering plant species richness on farms. Farms with a higher number of agroecological pest management practices had a lower abundance of the dominant butterfly species, but not of rarer species. However, a larger number of agroecological soil management practices was associated with a higher abundance of rarer species.Synthesis and applications: We show that diversified agroecological soil practices and flowering plant richness enhanced butterfly abundance on farms. However, our results suggest that on‐farm measures cannot compensate for the negative effects of continued woodland conversion. Therefore, we call for more active protection of remaining African woodlands in tandem with promoting agroecological soil management practices and on‐farm flowering plant richness to conserve butterflies while benefiting smallholders.more » « less
-
Abstract In the tropics, smallholder farming characterizes some of the world's most biodiverse landscapes. Agroecology as a pathway to sustainable agriculture has been proposed and implemented in sub‐Saharan Africa, but the effects of agricultural practices in smallholder agriculture on biodiversity and ecosystem services are understudied. Similarly, the contribution of different landscape elements, such as shrubland or grassland cover, on biodiversity and ecosystem services to fields remains unknown.We selected 24 villages situated in landscapes with varying shrubland and grassland cover in Malawi. In each village, we assessed biodiversity of eight taxa and ecosystem services in relation to crop type, shrubland and grassland cover and the number of agroecological pest and soil management practices on smallholder's fields of different crop types (bean monoculture, maize‐bean intercrop and maize monoculture).Increasing shrubland cover altered carabid and soil bacteria communities. Carabid abundance increased in maize but decreased in intercrop and bean fields with increasing shrubland cover. Carabid abundance and richness and wasp abundance increased with soil management practices. Carabid, spider and parasitoid abundances were higher in bean monocultures, but this was modulated by surrounding shrubland cover. Natural enemy abundances in beans were especially high in landscapes with little shrubland, possibly leading to lower bean damage in monocultures compared to intercropped fields, whereas maize monocultures had higher damage. In maize, grassland cover and pest management practices were positively related to damage. Carabid abundance was higher fields with high bean damage, and increased carabid richness in fields with high maize damage. Parasitoid abundance was negatively associated with bean damage.Synthesis and application. Our results suggest that maintaining biodiversity and ecosystem services on smallholder farms is not achievable with a ‘one size fits all’ approach but should instead be adapted to the landscape context and the priorities of smallholders. Shrubland is important to maintain carabid and soil bacterial diversity, but legume cultivation beneficial to natural enemies could complement pest management in landscapes with a low shrubland cover. An increased number of agroecological soil management practices can lead to improved pest control while the effectiveness of agroecological pest management practices needs to be re‐evaluated.more » « less
-
With climate extreme events increasing in frequency and intensity in Malawi, the future of local food production faces serious threats, necessitating renewed efforts to build the adaptive capabilities of the majority poor smallholder farmers. In this context, seed security is critical to improving rural livelihoods and agrobiodiversity; however, knowledge of its role in climate change resilience is sparse. Drawing insights from vulnerability and resilience literature, this paper examines the role of seed security in enhancing climate change resilience in northern Malawi. Using a cross-sectional survey of 1,090 smallholder farmers and applying logistic regression analysis, the study found that households that are seed-secure were significantly more likely to report stronger resilience to climate change than those that were not seed-secure, even after controlling for theoretically relevant variables (OR = 1.89; p < .01). Other noteworthy predictors of climate change resilience included level of education, wealth, agroecological practice, and seed sources. Based on the findings, we advocate for promoting seed security as part of broader localized and place-specific action plans to foster resilience to climate change in agricultural regions.more » « less
-
Agricultural simplification continues to expand at the expense of more diverse forms of agriculture. This simplification, for example, in the form of intensively managed monocultures, poses a risk to keeping the world within safe and just Earth system boundaries. Here, we estimated how agricultural diversification simultaneously affects social and environmental outcomes. Drawing from 24 studies in 11 countries across 2655 farms, we show how five diversification strategies focusing on livestock, crops, soils, noncrop plantings, and water conservation benefit social (e.g., human well-being, yields, and food security) and environmental (e.g., biodiversity, ecosystem services, and reduced environmental externalities) outcomes. We found that applying multiple diversification strategies creates more positive outcomes than individual management strategies alone. To realize these benefits, well-designed policies are needed to incentivize the adoption of multiple diversification strategies in unison.more » « less
-
Dmrdbs chudprhsw okTwr T ohunsTk pnkd enp ennc rdbtphsw sgpntfg bpno cTlTfd* mTstpTk odrs bnmspnk* Tmc onkkhmT, shnm- BkhlTsd vTplhmf hmbpdTrdr phrir ne hmrdbs odrs ntsapdTir Tmc sgpdTsdmr pdftkTshmf rdpuhbdr ctd sn roTshTk Tmc sdlonpTk lhrlTsbgdr- SpTmrenplTshnm snvTpc pdfhnmTkkw TcTosdc TfpndbnknfhbTk lTmTfdldms ne Tfpndbnrwrsdlr hr tpfdmskw mddcdc sn rtoonps pdrhkhdms ennc rwrsdlr-more » « less
-
Due to increasing climate variability and change, the need for more accessible, timely, and reliable climate information has risen, particularly in African rain-fed smallholder farming communities. Yet, studies on the role of information sources in climate resilience are limited. Given the plurality of climate information sources, it is uncertain which medium offers better chances to build resilience against the changing climate. To fill this gap, we employed quantitative survey data from smallholder agricultural households in the Mzimba District in Malawi (n =1090) and the Upper West Region of Ghana (n =1100). Our findings reveal that in Malawi, households whose primary source of climate information was the mass media (OR =2.37; p ≤ 0.001) and external organizations (government, private sector, and nonprofit sector) (OR =2.11; p ≤0.001) were over two times more likely to rate their resilience as good compared to those who relied primarily on self-experience. While in Ghana, interpersonal sources (other farmers, friends/ relatives, special activities by the community) significantly increased a household’s odds (OR = 3.46; p ≤0.001) of reporting good resilience, while external sources reduced farmers’ likelihood of reporting climate resilience (OR =0.06; p ≤0.001) compared to those who relied primarily on self-experience. Farmers in Malawi who practiced intercropping were also more likely to rate their resilience as good than those engaged in monocropping. The findings suggest that the relevance of information sources on climate change resilience is place-specific and that some sources may impede resilience-building if contextual factors are sidelined. This finding reaffirms the need for context-specific policies due to the heterogeneity of agrarian communities across Africa.more » « less
-
Land-use and local field management affect pollinators, pest damage and ultimately crop yields. Agroecology is implemented as a sustainable alternative to conventional agricultural practices, but little is known about its potential for pollination and pest management. Sub-Saharan Africa is underrepresented in studies investigating the relative importance of pests and pollinators for crop productivity and how this might be influenced by surrounding landscapes or agroecological practices. In Malawi, we selected 24 smallholder farms differing in landscape-scale shrubland cover, implementation of manual pest removal as an indicator of an agroecological pest management practice, and the number of agroecological soil practices employed at the household level, such as mulching, intercropping and soil conservation tillage. We established pumpkin plots and assessed the abundance and richness of flower visitors and damage of flowers (florivory) caused by pest herbivores on flowers. Using a full-factorial hand pollination and exclusion experiment on each plot, we investigated the relative contribution of pollination and florivory to pumpkin yield. Increasing shrubland cover decreased honeybee abundance but increased the abundance and richness of non-honeybee visitors. Manual removal of herbivores considered to be pests reduced flower visitors, whereas more agroecological soil management practices increased flower visitors. Neither shrubland cover nor agroecological management affected florivory. Pollinator limitation, but not florivory, constrained pumpkin fruit set, and increasing visitor richness decreased the relative differences between hand- and animal-pollinated flowers. We recommend improved protection of shrubland habitats and increasing agroecological soil practices to promote pollinator richness on smallholder farms.more » « less
-
In the context of food insecurity in resource-poor settings, agroecology (AE) has emerged as an important approach promoted for improving crop productivity, yet few studies have demonstrated how a combination of agroecological methods can improve crop health and thereby crop productivity. Using a geospatial approach, this study investigated whether agroecological practices can improve crop health in smallholder contexts. WE compared leaf area indexes (LAIs) of crops on AEs and non AE-farms and prospectively predicted the impact of AE using vegetation indexes (VIs). We found that crops on AE farms produced higher average growing season LAIs for maize and pigeonpeas (1.28 m2/m2) and maize and beans (1.29 m2/m2) farms compared to 0.97 m2/m2 and 0.80 m2/m2, respectively, for the same crops on the non-AE farms. The higher LAIs suggest that the combination of farming strategies practiced on the AE farms produced healtheir crops on AE farms. Random forest regression prospective predictions generated statistically significant higher LAIs for maize and beans (R2 = 0.90, root mean square error (RMSE] = 0.32 m2/m2) and maize and pigeonpea (R2 = 0.88 m2/m2, RMSE = 0.42 m2/m2) on the AE farms, but predictions for the non-AE farms were not statistically significant. The findings demonstrate that combining AE strategies can potentially improve crop productivity to enhance household food security and income in smallholder contexts.more » « less
-
Crop yield is related to household food security and community resilience, especially in smallholder agricultural systems. As such, it is crucial to accurately estimate within-season yield in order to provide critical information for farm management and decision making. Therefore, the primary objective of this paper is to assess the most appropriate method, indices, and growth stage for predicting the groundnut yield in smallholder agricultural systems in northern Malawi. We have estimated the yield of groundnut in two smallholder farms using the observed yield and vegetation indices (VIs), which were derived from multitemporal PlanetScope satellite data. Simple linear, multiple linear (MLR), and random forest (RF) regressions were applied for the prediction. The leave-one-out cross-validation method was used to validate the models. The results showed that (i) of the modelling approaches, the RF model using the five most important variables (RF5) was the best approach for predicting the groundnut yield, with a coefficient of determination (R2) of 0.96 and a root mean square error (RMSE) of 0.29 kg/ha, followed by the MLR model (R2 = 0.84, RMSE = 0.84 kg/ha); in addition, (ii) the best within-season stage to accurately predict groundnut yield is during the R5/beginning seed stage. The RF5 model was used to estimate the yield for four different farms. The estimated yields were compared with the total reported yields from the farms. The results revealed that the RF5 model generally accurately estimated the groundnut yields, with the margins of error ranging between 0.85% and 11%. The errors are within the post-harvest loss margins in Malawi. The results indicate that the observed yield and VIs, which were derived from open-source remote sensing data, can be applied to estimate yield in order to facilitate farming and food security planning.more » « less
-
Deforestation drives climate change and reinforces food insecurity in forest dependent communities. What drives deforestation varies by location and is shaped by livelihood systems. But how locals perceive restoration is crucial for developing restoration policies. Evidence suggests that applying sustainable farming strategies can potentially restore forests and sustain livelihoods. Applying a broad-based conceptualization of deforestation and restoration in policymaking, however, results in missed opportunities for addressing deforestation and restoration. Here, we explore the drivers of deforestation, the perceptions of restoration, and the challenges to restoration among smallholder farmers in northern Malawi and examine how agroecology can contribute to restoring degraded agroecosystems. Participants report agricultural land expansion, charcoal production, climate change, burnt brick production, and government subsidies as the major drivers of deforestation. We observed that although perceptions of forest restoration reflect farmers' traditional ecological knowledge (TEK) to include reclamation of degraded farmlands, reconstruction of native tree species, and replacement of felled trees on farmlands, there are challenges including splitting families to gain access to more subsidized fertilizers and food aid, embedded cultural practices, growing demand for charcoal in cities, and weak ecosystem governance structures that hinder the effectiveness of restoration efforts. We, however, do find that agroecological intensification can increase yield from smaller farmlands and allow for larger and longer-lasting fallows of spare lands which regenerate forests. Key overarching implications of these findings include the need to integrate livelihoods more explicitly into restoration plans, accounting for TEK in restoration policies in forest-dependent communities and encouraging the adoption of agroecology.more » « less
An official website of the United States government
