skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data from: Seed mix design and floral resources drive multi-trophic interactions in prairie restoration
Ecological restoration often targets plant community recovery, but restoration success may depend on the recovery of a complex web of biotic interactions to maintain biodiversity and promote ecosystem services. Specifically, management that drives resource availability, such as seeding richness and provenance, may alter species interactions across multiple trophic levels. Using experimentally seeded prairies, we examine three key groups – plants, pollinators, and goldenrod crab spiders (Misumena vatia, predators of pollinators) – to understand the effects of species richness and admixture seed sourcing of restoration seed mixtures on multi-trophic interactions. Working with prairie plants, we experimentally manipulated seed mix richness and the number of seed source regions (single-source region or admixture seed sourcing). In each experimental prairie, we surveyed floral abundance and richness, pollinator visitation, and plant-M. vatia interactions. A high-richness seed mix increased floral abundance when seeds were sourced from a single geographic region, and floral abundance strongly increased pollinator visitation, M. vatia abundance, and prey capture. Seeding richness and admixture seed sourcing of the seed mixture did not affect floral species richness, but floral species richness increased pollinator visitation. Pollinators interacted with different floral communities across seeding treatments, indicating a shift in visited floral species with restoration practices. Synthesis and applications. Long-term success in prairie restoration requires the restoration of plant-arthropod interactions. We provide evidence that seed mix richness and admixture seed sourcing affect arthropod floral associations, but effective restoration of plant-arthropod interactions should consider total floral resource availability. Incorporating a food web perspective in restoration will strengthen approaches to whole ecosystem restoration.  more » « less
Award ID(s):
2224712
PAR ID:
10584020
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Dryad
Date Published:
Subject(s) / Keyword(s):
Biodiversity crab spider Ecological restoration flower resources plant-pollinator network Species interactions seed sourcing seed sowing FOS: Biological sciences FOS: Biological sciences
Format(s):
Medium: X Size: 1065019 bytes
Size(s):
1065019 bytes
Right(s):
Creative Commons Zero v1.0 Universal
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ecological restoration often targets plant community recovery, but restoration success may depend on the recovery of a complex web of biotic interactions to maintain biodiversity and promote ecosystem services. Specifically, management that drives resource availability, such as seeding richness and provenance, may alter species interactions across multiple trophic levels. Using experimentally seeded prairies, we examine three key groups—plants, pollinators and goldenrod crab spiders (Misumena vatia, predators of pollinators)—to understand the effects of species richness and admixture seed sourcing of restoration seed mixtures on multitrophic interactions.Working with prairie plants, we experimentally manipulated seed mix richness and the number of seed source regions (single‐source region or admixture seed sourcing). In each experimental prairie, we surveyed floral abundance and richness, pollinator visitation and plant–M. vatiainteractions.A high richness seed mix increased floral abundance when seeds were sourced from a single geographic region, and floral abundance strongly increased pollinator visitation,M. vatiaabundance and prey capture. Seeding richness and admixture seed sourcing of the seed mixture did not affect floral species richness, but floral species richness increased pollinator visitation.Pollinators interacted with different floral communities across seeding treatments, indicating a shift in visited floral species with restoration practices.Synthesis and applications. Long‐term success in prairie restoration requires the restoration of plant–arthropod interactions. We provide evidence that seed mix richness and admixture seed sourcing affect arthropod floral associations, but effective restoration of plant–arthropod interactions should consider total floral resource availability. Incorporating a food web perspective in restoration will strengthen approaches to whole ecosystem restoration. 
    more » « less
  2. Climate change is likely to alter both flowering phenology and water availability for plants. Either of these changes alone can affect pollinator visitation and plant reproductive success. The relative impacts of phenology and water, and whether they interact in their impacts on plant reproductive success remain, however, largely unexplored. We manipulated flowering phenology and soil moisture in a factorial experiment with the subalpine perennial Mertensia ciliata (Boraginaceae). We examined responses of floral traits, floral abundance, pollinator visitation, and composition of visits by bumblebees vs. other pollinators. To determine the net effects on plant reproductive success, we also measured seed production and seed mass. Reduced water led to shorter, narrower flowers that produced less nectar. Late flowering plants produced fewer and shorter flowers. Both flowering phenology and water availability influenced pollination and reproductive success. Differences in flowering phenology had greater effects on pollinator visitation than did changes in water availability, but the reverse was true for seed production and mass, which were enhanced by greater water availability. The probability of receiving a flower visit declined over the season, coinciding with a decline in floral abundance in the arrays. Among plants receiving visits, both the visitation rate and percent of non-bumblebee visitors declined after the first week and remained low until the final week. We detected interactions of phenology and water on pollinator visitor composition, in which plants subject to drought were the only group to experience a late-season resurgence in visits by solitary bees and flies. Despite that interaction, net reproductive success measured as seed production responded additively to the two manipulations of water and phenology. Commonly observed declines in flower size and reward due to drought or shifts in phenology may not necessarily result in reduced plant reproductive success, which in M. ciliata responded more directly to water availability. The results highlight the need to go beyond studying single responses to climate changes, such as either phenology of a single species or how it experiences an abiotic factor, in order to understand how climate change may affect plant reproductive success. 
    more » « less
  3. Invasive plants often use mutualisms to establish in their new habitats and tend to be visited by resident pollinators similarly or more frequently than native plants. The quality and resulting reproductive success of those visits, however, have rarely been studied in a network context. Here, we use a dynamic model to evaluate the invasion success and impacts on natives of various types of non‐native plant species introduced into thousands of plant–pollinator networks of varying structure. We found that network structure properties did not predict invasion success, but non‐native traits and interactions did. Specifically, non‐native plants producing high amounts of floral rewards but visited by few pollinators at the moment of their introduction were the only plant species able to invade the networks. This result is determined by the transient dynamics occurring right after the plant introduction. Successful invasions increased the abundance of pollinators that visited the invader, but the reallocation of the pollinators' foraging effort from native plants to the invader reduced the quantity and quality of visits received by native plants and made the networks slightly more modular and nested. The positive and negative effects of the invader on pollinator and plant abundance, respectively, were buffered by plant richness. Our results call for evaluating the impact of invasive plants not only on visitation rates and network structure, but also on processes beyond pollination including seed production and recruitment of native plants. 
    more » « less
  4. Anthropogenic climate change is altering interactions among numerous species, including plants and pollinators. Plant-pollinator interactions, crucial for the persistence of most plant and many insect species, are threatened by climate change-driven phenological shifts. Phenological mismatches between plants and their pollinators may affect pollination services, and simulations indicated that these mismatches may reduce floral resources available to up to 50% of insect pollinator species. Although alpine plants rely heavily on vegetative reproduction, seedling recruitment and seed dispersal are likely to be important drivers of alpine community structure. Similarly, advanced flowering may expose plants to increased risk of frost damage and shifted soil moisture regimes; phenologically advanced plants will experience these environmental factors differently, which may alter their floral resource production. These effects may be dependent upon topography. Some species of alpine plants on the Niwot Ridge have displayed advanced phenology under treatments of advanced snowmelt (Forrester, 2021). However, little is understood about how these differences in distribution and phenology affect pollinator community composition and plant fecundity. Here we strive to examine how experimentally-induced changes in the timing of flowering and number of flowers produced by plants impact plant-pollinator interactions and seed set. We also ask how topography and the number of flowers interact with early snowmelt to affect pollination rates and the diversity of pollinating insects. Finally, we ask how seed set of Geum rossii is affected by pollinator visitation at different times of the season, under experimentally advanced snowmelt versus unmanipulated snowmelt, and with visitation by different insect taxa. In summer 2020, we found that plots with advanced phenology experienced peaks in pollinator visitation rates and pollinator diversity earlier than plots with unmanipulated snowmelt. We expect this to be because of the advanced floral phenology of certain key species in these plots. References: Forrester, C.C. (2021). Advancing, Using, and Teaching Climate Change Ecology Research. [Doctoral dissertation, University of Colorado, Boulder]. ProQuest Dissertations and Theses. 
    more » « less
  5. Abstract A critical goal for ecologists is understanding how ongoing local and global species losses will affect ecosystem functions and services. Diversity–functioning relationships, which are well‐characterized in primary producer communities, are much less consistently predictable for ecosystem functions involving two or more trophic levels, particularly in situations where multiple species in one trophic level impact functional outcomes at another trophic level. This is particularly relevant to pollination functioning, given ongoing pollinator declines and the value of understanding pollination functioning for single plant species like crops or threatened plants. We used spatially replicated, controlled single‐pollinator‐species removal experiments to assess how changes in bumble bee species richness impacted the production of fertilized seeds in a perennial herb—Delphinium barbeyi—in the Rocky Mountains of Colorado, USA. To improve predictability, we also assessed how traits and abundances in the plant and bumble bee communities were related toD. barbeyireproductive success. We hypothesized that trait‐matching between pollinator proboscis length andD. barbeyi's nectar spurs would produce a greater number of fertilized seeds, while morphological similarity within the floral community would dilute pollination services. We found that the effects of pollinator removal differed depending on the behavioral patterns of pollinators and compositional features of the plant and pollinator communities. While pollinator floral fidelity generally increasedD. barbeyiseed production, that positive effect was primarily evident when more than half of theBombuscommunity was experimentally removed. Similarly, communities comprising primarily long‐tongued bees were most beneficial toD. barbeyiseed production in tandem with a strong removal. Finally, we observed contrasting effects of morphological similarity in the plant community, with evidence of both competition and facilitation among plants. These results offer an example of the complex dynamics underlying ecosystem function in multitrophic systems and demonstrate that community context can impact diversity–functioning relationships between trophic levels. 
    more » « less