Abstract Gallium-based liquid metals (LM) have surface tension an order of magnitude higher than water and break up into micro-droplets when mixed with other liquids. In contrast, silicone oil readily mixes into LM foams to create oil-in-LM emulsions with oil inclusions. Previously, the LM was foamed through rapid mixing in air for an extended duration (over 2 hours). This process first results in the internalization of oxide flakes that form at the air-liquid interface. Once a critical fraction of these randomly shaped solid flakes is reached, air bubbles internalize into the LM to create foams that can internalize secondary liquids. Here, we introduce an alternative oil-in-LM emulsion fabrication method that relies on the prior addition of SiO2 micro-particles into the LM before mixing it with the silicone oil. This particle-assisted emulsion formation process provides a higher control over the composition of the LM-particle mixture before oil addition, which we employ to systematically study the impact of particle characteristics and content on the emulsions' composition and properties. We demonstrate that the solid particle size (0.8 µm to 5 µm) and volume fraction (1% to 10%) have a negligible impact on the internalization of the oil inclusions. The inclusions are mostly spherical with diameters of 20 to 100 µm diameter and are internalized by forming new, rather than filling old, geometrical features. We also study the impact of the particle characteristics on the two key properties related to the functional application of the LM emulsions in the thermal management of microelectronics. In particular, we measure the impact of particles and silicone oil on the emulsion's thermal conductivity and its ability to prevent deleterious gallium-induced corrosion and embrittlement of contacting metal substrates. 
                        more » 
                        « less   
                    
                            
                            Fabrication of Multiphase Liquid Metal Composites Containing Gas and Solid Fillers: From Pastes to Foams
                        
                    
    
            Gallium-based liquid metals (LMs) are suitable for many potential applications due to their unique combination of metallic and liquid properties. However, due to their high surface tension and low viscosity, LMs are challenging to apply to substrates in useful shapes, such as dots, wires, and films. These issues are mitigated by mixing the LMs in air with other materials, such as mixing with solid particles to form LM solid pastes or mixing with gases to form LM foams. Underlying these deceivingly simple mixing processes are complex and highly intertwined microscale mechanisms. Air microbubbles are inevitably incorporated while making LM pastes, making them partly foams. On the other hand, for foaming of the LM to occur, a critical volume content of solid particles must be internalized first. Consequently, both LM pastes and foams are multiphase composites containing solid and fluid microcomponents. Here, we systematically study the impact of the mixing procedure, solid particle size, and volume fraction (SiO2) on the air content of the multiphase LM composites. We demonstrate that decreasing the particle size and increasing their volume fraction substantially decrease the composite density (i.e., increases air entrapment). The foaming process can also be enhanced with the use of high-speed mechanical mixing, although leading to the formation of a more disordered internal structure. In contrast, manual mixing with larger microparticles can promote the formation of more paste-like composites with minimal air content. We explain the microscopic mechanisms underlying these trends by correlating macroscopic measurements with cross-sectional electron microscopy of the internal structure. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10421135
- Date Published:
- Journal Name:
- ACS Applied Engineering Materials
- ISSN:
- 2771-9545
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Pastes and “foams” containing liquid metal (LM) as the continuous phase (liquid metal foams, LMFs) exhibit metallic properties while displaying paste or putty‐like rheological behavior. These properties enable LMFs to be patterned into soft and stretchable electrical and thermal conductors through processes conducted at room temperature, such as printing. The simplest LMFs, featured in this work, are made by stirring LM in air, thereby entraining oxide‐lined air “pockets” into the LM. Here, it is reported that mixing small amounts of water (as low as 1 wt%) into such LMFs gives rise to significant foaming by harnessing known reactions that evolve hydrogen and produce oxides. The resulting structures can be ≈4–5× their original volume and possess a fascinating combination of attributes: porosity, electrical conductivity, and responsiveness to environmental conditions. This expansion can be utilized for a type of 4D printing in which patterned conductors “grow,” fill cavities, and change shape and density with respect to time. Excessive exposure to water in the long term ultimately consumes the metal in the LMF. However, when exposure to water is controlled, the metallic properties of porous LMFs can be preserved.more » « less
- 
            null (Ed.)Particle mixing process is critical for the design and quality control of concrete and composite production. This paper develops an algorithm to simulate the high-shear mixing process of a granular flow containing a high proportion of solid particles mixed in a liquid. DEM is employed to simulate solid particle interactions; whereas SPH is implemented to simulate the liquid particles. The two-way coupling force between SPH and DEM particles is used to evaluate the solid-liquid interaction of a multi-phase flow. Using Darcy’s Law, this paper evaluates the coupling force as a function of local mixture porosity. After the model is verified by two benchmark case studies, i.e., a solid particle moving in a liquid and fluid flowing through a porous medium, this method is applied to a high shear mixing problem of two types of solid particles mixed in a viscous liquid by a four-bladed mixer. A homogeneity metric is introduced to characterize the mixing quality of the particulate mixture. The virtual experiments with the present algorithm show that adding more liquid or increasing liquid viscosity slows down the mixing process for a high solid load mix. Although the solid particles can be mixed well eventually, the liquid distribution is not homogeneous, especially when the viscosity of liquid is low. The present SPH-DEM model is versatile and suitable for virtual experiments of particle mixing process with different blades, solid particle densities and sizes, and liquid binders, and thus can expedite the design and development of concrete materials and particulate composites.more » « less
- 
            Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.more » « less
- 
            Abstract. Understanding the impact of sea spray aerosol (SSA) on theclimate and atmosphere requires quantitative knowledge of their chemicalcomposition and mixing states. Furthermore, single-particle measurements areneeded to accurately represent large particle-to-particle variability. Toquantify the mixing state, the organic volume fraction (OVF), defined as therelative organic volume with respect to the total particle volume, ismeasured after generating and collecting aerosol particles, often usingdeposition impactors. In this process, the aerosol streams are either driedor kept wet prior to impacting on solid substrates. However, the atmosphericcommunity has yet to establish how dry versus wet aerosol depositioninfluences the impacted particle morphologies and mixing states. Here, weapply complementary offline single-particle atomic force microscopy (AFM)and bulk ensemble high-performance liquid chromatography (HPLC) techniquesto assess the effects of dry and wet deposition modes on thesubstrate-deposited aerosol particles' mixing states. Glucose and NaClbinary mixtures that form core–shell particle morphologies were studied asmodel systems, and the mixing states were quantified by measuring the OVF ofindividual particles using AFM and compared to the ensemble measured byHPLC. Dry-deposited single-particle OVF data positively deviated from thebulk HPLC data by up to 60 %, which was attributed to significantspreading of the NaCl core upon impaction with the solid substrate. This ledto underestimation of the core volume. This problem was circumvented by (a) performing wet deposition and thus bypassing the effects of the solid corespreading upon impaction and (b) performing a hydration–dehydration cycle ondry-deposited particles to restructure the deformed NaCl core. Bothapproaches produced single-particle OVF values that converge well with thebulk and expected OVF values, validating the methodology. These findingsillustrate the importance of awareness in how conventional particledeposition methods may significantly alter the impacted particlemorphologies and their mixing states.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    