skip to main content


Title: Virtual Experiments of Particle Mixing Process with the SPH-DEM Model
Particle mixing process is critical for the design and quality control of concrete and composite production. This paper develops an algorithm to simulate the high-shear mixing process of a granular flow containing a high proportion of solid particles mixed in a liquid. DEM is employed to simulate solid particle interactions; whereas SPH is implemented to simulate the liquid particles. The two-way coupling force between SPH and DEM particles is used to evaluate the solid-liquid interaction of a multi-phase flow. Using Darcy’s Law, this paper evaluates the coupling force as a function of local mixture porosity. After the model is verified by two benchmark case studies, i.e., a solid particle moving in a liquid and fluid flowing through a porous medium, this method is applied to a high shear mixing problem of two types of solid particles mixed in a viscous liquid by a four-bladed mixer. A homogeneity metric is introduced to characterize the mixing quality of the particulate mixture. The virtual experiments with the present algorithm show that adding more liquid or increasing liquid viscosity slows down the mixing process for a high solid load mix. Although the solid particles can be mixed well eventually, the liquid distribution is not homogeneous, especially when the viscosity of liquid is low. The present SPH-DEM model is versatile and suitable for virtual experiments of particle mixing process with different blades, solid particle densities and sizes, and liquid binders, and thus can expedite the design and development of concrete materials and particulate composites.  more » « less
Award ID(s):
1762891 1738802
NSF-PAR ID:
10276150
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Materials
Volume:
14
Issue:
9
ISSN:
1996-1944
Page Range / eLocation ID:
2199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A Eulerian—Lagrangian model has been developed to simulate particle attachment to surfaces with arc-shaped ribs in a two-dimensional channel flow at low Reynolds numbers. Numerical simulation has been performed to improve the quantitative understanding of how rib geometries enhance shear rates and particle-surface interact for various particle sizes and flow velocities. The enhanced shear rate is attributed to the wavy flows that develop over the ribbed surface and the weak vortices that form between adjacent ribs. Varying pitch-to-height ratio can alter the amplitude of the wavy flow and the angle of attack of the fluid on the ribs. In the presence of these two competing factors, the rib geometry with a pitch-to-height ratio of two demonstrates the greatest shear rate and the lowest fraction of particle attachment. However, the ribbed surfaces have negligible effects on small particles at low velocities. A force analysis identifies a threshold shear rate to reduce particle attachment. The simulated particle distributions over the ribbed surfaces are highly non-uniform for larger particles at higher velocities. The understanding of the effect of surface topography on particle attachment will benefit the design of surface textures for mitigating particulate fouling in a wide range of applications. 
    more » « less
  2. A computational study was performed both of a single agglomerate and of the collision of two agglomerates in a shear flow. The agglomerates were extracted from a direct numerical simulation of a turbulent agglomeration process, and had the loosely packed fractal structure typical of agglomerate structures formed in turbulent agglomeration processes. The computation was performed using a discrete-element method for adhesive particles with four-way coupling, accounting both for forces between the fluid and the particles (and vice versa ) as well as force transmission directly between particles via particle collisions. In addition to understanding and characterizing the particle dynamics, the study focused on illuminating the fluid flow field induced by the agglomerate in the presence of a background shear and the effect of collisions on this particle-induced flow. Perhaps the most interesting result of the current work was the observation that the flow field induced by a particle agglomerate rotating in a shear flow has the form of two tilted vortex rings with opposite-sign circulation. These rings are surrounded by a sea of stretched vorticity from the background shear flow. The agglomerate rotates in the shear flow, but at a slower rate than the ambient fluid elements. In the computations with two colliding agglomerates, we observed cases resulting in agglomerate merger, bouncing and fragmentation. However, the bouncing cases were all observed to also result in an exchange of particles between the two colliding agglomerates, so that they were influenced both by elastic rebound of the agglomerate structures as well as by tearing away of particulate matter between the agglomerates. Overall, the problems of agglomerate–flow interaction and of the collision of two agglomerates in a shear flow are considerably richer in physical phenomena and more complex than can be described by the common approximation that represents each agglomerate by an ‘equivalent sphere’. 
    more » « less
  3. null (Ed.)
    Particle size and settling speed determine the rate of particulate mass transfer from the ocean surface to the sea bed. Turbulent shear in the ocean can act on large, faster-settling flocculated particles to break them into slower-settling primary particles or sub-aggregates. However, it is difficult to understand the disruption behavior of aggregates and their response to varying shear forces due to the complex ocean environment. A study was conducted to simulate the disruption behavior of marine aggregates in the mixed layer of the ocean. The breakup process was investigated by aggregating and disrupting flocs of bentonite clay particles in a rotating and oscillating cylindrical tank 10 cm in diameter filled with salt water. This laboratory tank, which operated based on an extension of Stokes’ second problem inside a cylinder, created laminar oscillating flow superimposed on a constant rotation. This motion allowed the bentonite particles to aggregate near the center of the tank but also exposed large aggregates to high shear forces near the wall. A high-speed camera system was used, along with particle tracking measurements and image processing techniques, to capture the breakup of the large particle aggregates and locate their radial position. The breakup response of large aggregates and the sizes of their daughter particles after breakup were quantified using the facility. The disruption strength of the aggregated particles is presented and discussed relative to their exposure to varying amounts of laminar shear. 
    more » « less
  4. Three-phase suspensions, of liquid that suspends dispersed solid particles and gas bubbles, are common in both natural and industrial settings. Their rheology is poorly constrained, particularly for high total suspended fractions (≳0.5). We use a dam-break consistometer to characterize the rheology of suspensions of (Newtonian) corn syrup, plastic particles and CO 2 bubbles. The study is motivated by a desire to understand the rheology of magma and lava. Our experiments are scaled to the volcanic system: they are conducted in the non-Brownian, non-inertial regime; bubble capillary number is varied across unity; and bubble and particle fractions are 0 ≤  ϕ gas  ≤ 0.82 and 0 ≤  ϕ solid  ≤ 0.37, respectively. We measure flow-front velocity and invert for a Herschel–Bulkley rheology model as a function of ϕ gas , ϕ solid , and the capillary number. We find a stronger increase in relative viscosity with increasing ϕ gas in the low to intermediate capillary number regime than predicted by existing theory, and find both shear-thinning and shear-thickening effects, depending on the capillary number. We apply our model to the existing community code for lava flow emplacement, PyFLOWGO, and predict increased viscosity and decreased velocity compared with current rheological models, suggesting existing models may not adequately account for the role of bubbles in stiffening lavas. 
    more » « less
  5. null (Ed.)
    Abstract. Atmospheric aerosols are a significant public health hazard and havesubstantial impacts on the climate. Secondary organic aerosols (SOAs) havebeen shown to phase separate into a highly viscous organic outer layersurrounding an aqueous core. This phase separation can decrease thepartitioning of semi-volatile and low-volatile species to the organic phaseand alter the extent of acid-catalyzed reactions in the aqueous core. A newalgorithm that can determine SOA phase separation based on their glasstransition temperature (Tg), oxygen to carbon (O:C) ratio and organic massto sulfate ratio, and meteorological conditions was implemented into theCommunity Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 andwas used to simulate the conditions in the continental United States for thesummer of 2013. SOA formed at the ground/surface level was predicted to bephase separated with core–shell morphology, i.e., aqueous inorganic coresurrounded by organic coating 65.4 % of the time during the 2013 SouthernOxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeasternUnited States. Our estimate is in proximity to the previously reported∼70 % in literature. The phase states of organic coatingsswitched between semi-solid and liquid states, depending on theenvironmental conditions. The semi-solid shell occurring with lower aerosolliquid water content (western United States and at higher altitudes) has aviscosity that was predicted to be 102–1012 Pa s, whichresulted in organic mass being decreased due to diffusion limitation.Organic aerosol was primarily liquid where aerosol liquid water was dominant(eastern United States and at the surface), with a viscosity <102 Pa s.Phase separation while in a liquid phase state, i.e.,liquid–liquid phase separation (LLPS), also reduces reactive uptake ratesrelative to homogeneous internally mixed liquid morphology but was lowerthan aerosols with a thick viscous organic shell. The sensitivity casesperformed with different phase-separation parameterization and dissolutionrate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can havevarying impact on fine particulate matter (PM2.5) organic mass, interms of bias and error compared to field data collected during the 2013 SOAS.This highlights the need to better constrain the parameters thatgovern phase state and morphology of SOA, as well as expand mechanisticrepresentation of multiphase chemistry for non-IEPOX SOA formation in modelsaided by novel experimental insights. 
    more » « less