skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraint-Driven Optimal Control for Emergent Swarming and Predator Avoidance
In this article, we present a constraint-driven optimal control framework that achieves emergent cluster flocking within a constrained 2D environment. We formulate a decentralized optimal control problem that includes safety, flocking, and predator avoidance constraints. We explicitly derive conditions for constraint compatibility and propose an event-driven constraint relaxation scheme. We map this to an equivalent switching system that intuitively describes the behavior of each agent in the system. Instead of minimizing control effort, as it is common in the ecologically-inspired robotics literature, in our approach, we minimize each agent’s deviation from their most efficient locomotion speed. Finally, we demonstrate our approach in simulation both with and without the presence of a predator.  more » « less
Award ID(s):
2149520 2219761
PAR ID:
10421261
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2023 American Control Conference
Page Range / eLocation ID:
399-404
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Multiagent coordination is highly desirable with many uses in a variety of tasks. In nature, the phenomenon of coordinated flocking is highly common with applications related to defending or escaping from predators. In this article, a hybrid multiagent system that integrates consensus, cooperative learning, and flocking control to determine the direction of attacking predators and learns to flock away from them in a coordinated manner is proposed. This system is entirely distributed requiring only communication between neighboring agents. The fusion of consensus and collaborative reinforcement learning allows agents to cooperatively learn in a variety of multiagent coordination tasks, but this article focuses on flocking away from attacking predators. The results of the flocking show that the agents are able to effectively flock to a target without collision with each other or obstacles. Multiple reinforcement learning methods are evaluated for the task with cooperative learning utilizing function approximation for state-space reduction performing the best. The results of the proposed consensus algorithm show that it provides quick and accurate transmission of information between agents in the flock. Simulations are conducted to show and validate the proposed hybrid system in both one and two predator environments, resulting in an efficient cooperative learning behavior. In the future, the system of using consensus to determine the state and reinforcement learning to learn the states can be applied to additional multiagent tasks. 
    more » « less
  2. Abstract Data‐enabled predictive control (DeePC) is a data‐driven control algorithm that utilizes data matrices to form a non‐parametric representation of the underlying system, predicting future behaviors and generating optimal control actions. DeePC typically requires solving an online optimization problem, the complexity of which is heavily influenced by the amount of data used, potentially leading to expensive online computation. In this article, we leverage deep learning to propose a highly computationally efficient DeePC approach for general nonlinear processes, referred to as Deep DeePC. Specifically, a deep neural network is employed to learn the DeePC vector operator, which is an essential component of the non‐parametric representation of DeePC. This neural network is trained offline using historical open‐loop input and output data of the nonlinear process. With the trained neural network, the Deep DeePC framework is formed for online control implementation. At each sampling instant, this neural network directly outputs the DeePC operator, eliminating the need for online optimization as conventional DeePC. The optimal control action is obtained based on the DeePC operator updated by the trained neural network. To address constrained scenarios, a constraint handling scheme is further proposed and integrated with the Deep DeePC to handle hard constraints during online implementation. The efficacy and superiority of the proposed Deep DeePC approach are demonstrated using two benchmark process examples. 
    more » « less
  3. We present ResilienC, a framework for resilient control of Cyber- Physical Systems subject to STL-based requirements. ResilienC uti- lizes a recently developed formalism for specifying CPS resiliency in terms of sets of (rec,dur) real-valued pairs, where rec repre- sents the system’s capability to rapidly recover from a property violation (recoverability), and dur is reflective of its ability to avoid violations post-recovery (durability). We define the resilient STL control problem as one of multi-objective optimization, where the recoverability and durability of the desired STL specification are maximized. When neither objective is prioritized over the other, the solution to the problem is a set of Pareto-optimal system trajectories. We present a precise solution method to the resilient STL control problem using a mixed-integer linear programming encoding and an a posteriori n-constraint approach for efficiently retrieving the complete set of optimally resilient solutions. In ResilienC, at each time-step, the optimal control action selected from the set of Pareto- optimal solutions by a Decision Maker strategy realizes a form of Model Predictive Control. We demonstrate the practical utility of the ResilienC framework on two significant case studies: autonomous vehicle lane keeping and deadline-driven, multi-region package delivery. 
    more » « less
  4. Integer-order calculus fails to capture the long-range dependence (LRD) and memory effects found in many complex systems. Fractional calculus addresses these gaps through fractional-order integrals and derivatives, but fractional-order dynamical systems pose substantial challenges in system identification and optimal control tasks. In this paper, we theoretically derive the optimal control via linear quadratic regulator (LQR) for fractional-order linear time-invariant (FOLTI) systems and develop an end-to-end deep learning framework based on this theoretical foundation. Our approach establishes a rigorous mathematical model, derives analytical solutions, and incorporates deep learning to achieve data-driven optimal control of FOLTI systems. Our key contributions include: (i) proposing a novel method for system identification and optimal control strategy in FOLTI systems, (ii) developing the first end-to-end data-driven learning framework, Fractional-Order Learning for Optimal Control (FOLOC), that learns control policies from observed trajectories, and (iii) deriving theoretical bounds on the sample complexity for learning accurate control policies under fractional-order dynamics. Experimental results indicate that our method accurately approximates fractional-order system behaviors without relying on Gaussian noise assumptions, pointing to promising avenues for advanced optimal control. 
    more » « less
  5. We introduce the concept of Distributed Model Predictive Control (DMPC) with Acceleration-Weighted Neighborhooding (AWN) in order to synthesize a distributed and symmetric controller for high-speed flocking maneuvers (angular turns in general). Acceleration-Weighted Neighborhooding exploits the imbalance in agent accelerations during a turning maneuver to ensure that actively turning agents are prioritized. We show that with our approach, a flocking maneuver can be achieved without it being a global objective. Only a small subset of the agents, called initiators, need to be aware of the maneuver objective. Our AWN-DMPC controller ensures this local information is propagated throughout the flock in a scale-free manner with linear delays. Our experimental evaluation conclusively demonstrates the maneuvering capabilities of a distributed flocking controller based on AWN-DMPC. 
    more » « less