skip to main content


Title: Consensus, cooperative learning, and flocking for multiagent predator avoidance
Multiagent coordination is highly desirable with many uses in a variety of tasks. In nature, the phenomenon of coordinated flocking is highly common with applications related to defending or escaping from predators. In this article, a hybrid multiagent system that integrates consensus, cooperative learning, and flocking control to determine the direction of attacking predators and learns to flock away from them in a coordinated manner is proposed. This system is entirely distributed requiring only communication between neighboring agents. The fusion of consensus and collaborative reinforcement learning allows agents to cooperatively learn in a variety of multiagent coordination tasks, but this article focuses on flocking away from attacking predators. The results of the flocking show that the agents are able to effectively flock to a target without collision with each other or obstacles. Multiple reinforcement learning methods are evaluated for the task with cooperative learning utilizing function approximation for state-space reduction performing the best. The results of the proposed consensus algorithm show that it provides quick and accurate transmission of information between agents in the flock. Simulations are conducted to show and validate the proposed hybrid system in both one and two predator environments, resulting in an efficient cooperative learning behavior. In the future, the system of using consensus to determine the state and reinforcement learning to learn the states can be applied to additional multiagent tasks.  more » « less
Award ID(s):
1846513 1919127
NSF-PAR ID:
10231065
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Advanced Robotic Systems
Volume:
17
Issue:
5
ISSN:
1729-8814
Page Range / eLocation ID:
172988142096034
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This article considers resilient cooperative state estimation in unreliable multiagent networks. A network of agents aim to collaboratively estimate the value of an unknown vector parameter, while an unknown subset of agents suffer Byzantine faults. We refer to the faulty agents as Byzantine agents. Byzantine agents malfunction arbitrarily and may send out highly unstructured messages to other agents in the network. As opposed to fault-free networks, reaching agreement in the presence of Byzantine agents is far from trivial. In this article, we propose a computationally efficient algorithm that is provably robust to Byzantine agents. At each iteration of the algorithm, a good agent performs a gradient descent update based on noisy local measurements, exchanges its update with other agents in its neighborhood, and robustly aggregates the received messages using coordinate-wise trimmed means. Under mild technical assumptions, we establish that good agents learn the true parameter asymptotically in almost sure sense. We further complement our analysis by proving (high probability) finite-time convergence rate, encapsulating network characteristics. 
    more » « less
  2. Agmon, N ; An, B ; Ricci, A ; Yeoh, W. (Ed.)
    In multiagent systems that require coordination, agents must learn diverse policies that enable them to achieve their individual and team objectives. Multiagent Quality-Diversity methods partially address this problem by filtering the joint space of policies to smaller sub-spaces that make the diversification of agent policies tractable. However, in teams of asymmetric agents (agents with different objectives and capabilities), the search for diversity is primarily driven by the need to find policies that will allow agents to assume complementary roles required to work together in teams. This work introduces Asymmetric Island Model (AIM), a multiagent framework that enables populations of asymmetric agents to learn diverse complementary policies that foster teamwork via dynamic population size allocation on a wide variety of team tasks. The key insight of AIM is that the competitive pressure arising from the distribution of policies on different team-wide tasks drives the agents to explore regions of the policy space that yield specializations that generalize across tasks. Simulation results on multiple variations of a remote habitat problem highlight the strength of AIM in discovering robust synergies that allow agents to operate near-optimally in response to the changing team composition and policies of other agents. 
    more » « less
  3. Silva, S ; Paquete, L (Ed.)
    Coevolving teams of agents promises effective solutions for many coordination tasks such as search and rescue missions or deep ocean exploration. Good team performance in such domains generally relies on agents discovering complex joint policies, which is particularly difficult when the fitness functions are sparse (where many joint policies return the same or even zero fitness values). In this paper, we introduce Novelty Seeking Multiagent Evolutionary Reinforcement Learning (NS-MERL), which enables agents to more efficiently explore their joint strategy space. The key insight of NS-MERL is to promote good exploratory behaviors for individual agents using a dense, novelty-based fitness function. Though the overall team-level performance is still evaluated via a sparse fitness function, agents using NS-MERL more efficiently explore their joint action space and more readily discover good joint policies. Our results in complex coordination tasks show that teams of agents trained with NS-MERL perform significantly better than agents trained solely with task-specific fitnesses. 
    more » « less
  4. In cooperative multi-agent reinforcement learning (Co-MARL), a team of agents must jointly optimize the team's longterm rewards to learn a designated task. Optimizing rewards as a team often requires inter-agent communication and data sharing, leading to potential privacy implications. We assume privacy considerations prohibit the agents from sharing their environment interaction data. Accordingly, we propose Privacy-Engineered Value Decomposition Networks (PE-VDN), a Co-MARL algorithm that models multi-agent coordination while provably safeguarding the confidentiality of the agents' environment interaction data. We integrate three privacy-engineering techniques to redesign the data flows of the VDN algorithm-an existing Co-MARL algorithm that consolidates the agents' environment interaction data to train a central controller that models multi-agent coordination-and develop PE-VDN. In the first technique, we design a distributed computation scheme that eliminates Vanilla VDN's dependency on sharing environment interaction data. Then, we utilize a privacy-preserving multi-party computation protocol to guar-antee that the data flows of the distributed computation scheme do not pose new privacy risks. Finally, we enforce differential privacy to preempt inference threats against the agents' training data-past environment interactions-when they take actions based on their neural network predictions. We implement PE-VDN in StarCraft Multi-Agent Competition (SMAC) and show that it achieves 80% of Vanilla VDN's win rate while maintaining differential privacy levels that provide meaningful privacy guarantees. The results demonstrate that PE-VDN can safeguard the confidentiality of agents' environment interaction data without sacrificing multi-agent coordination. 
    more » « less
  5. In multi-agent reinforcement learning (MARL), it is challenging for a collection of agents to learn complex temporally extended tasks. The difficulties lie in computational complexity and how to learn the high-level ideas behind reward functions. We study the graph-based Markov Decision Process (MDP), where the dynamics of neighboring agents are coupled. To learn complex temporally extended tasks, we use a reward machine (RM) to encode each agent’s task and expose reward function internal structures. RM has the capacity to describe high-level knowledge and encode non-Markovian reward functions. We propose a decentralized learning algorithm to tackle computational complexity, called decentralized graph-based reinforcement learning using reward machines (DGRM), that equips each agent with a localized policy, allowing agents to make decisions independently based on the information available to the agents. DGRM uses the actor-critic structure, and we introduce the tabular Q-function for discrete state problems. We show that the dependency of the Q-function on other agents decreases exponentially as the distance between them increases. To further improve efficiency, we also propose the deep DGRM algorithm, using deep neural networks to approximate the Q-function and policy function to solve large-scale or continuous state problems. The effectiveness of the proposed DGRM algorithm is evaluated by three case studies, two wireless communication case studies with independent and dependent reward functions, respectively, and COVID-19 pandemic mitigation. Experimental results show that local information is sufficient for DGRM and agents can accomplish complex tasks with the help of RM. DGRM improves the global accumulated reward by 119% compared to the baseline in the case of COVID-19 pandemic mitigation. 
    more » « less