ABSTRACT It remains a major challenge to derive a theory of cloud-scale ($$\lesssim100$$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∼100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically $$10\!-\!30\,{\rm Myr}$$, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $$\Sigma _{\rm H_2}\ge 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $$\Sigma _{\rm H_2}\le 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just $$1\!-\!5\,{\rm Myr}$$ once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H ii regions are the fundamental units undergoing these lifecycles, with mean separations of $$100\!-\!300\,{{\rm pc}}$$ in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles.
more »
« less
Molecular Gas and Star Formation in Nearby Starburst Galaxy Mergers
Abstract We employ the Feedback In Realistic Environments (FIRE-2) physics model to study how the properties of giant molecular clouds (GMCs) evolve during galaxy mergers. We conduct a pixel-by-pixel analysis of molecular gas properties in both the simulated control galaxies and galaxy major mergers. The simulated GMC pixels in the control galaxies follow a similar trend in a diagram of velocity dispersion (σv) versus gas surface density (Σmol) to the one observed in local spiral galaxies in the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) survey. For GMC pixels in simulated mergers, we see a significant increase of a factor of 5–10 in both Σmolandσv, which puts these pixels above the trend of PHANGS galaxies in theσvversus Σmoldiagram. This deviation may indicate that GMCs in the simulated mergers are much less gravitationally bound compared with simulated control galaxies with virial parameters (αvir) reaching 10–100. Furthermore, we find that the increase inαvirhappens at the same time as the increase in global star formation rate, which suggests that stellar feedback is responsible for dispersing the gas. We also find that the gas depletion time is significantly lower for high-αvirGMCs during a starburst event. This is in contrast to the simple physical picture that low-αvirGMCs are easier to collapse and form stars on shorter depletion times. This might suggest that some other physical mechanisms besides self-gravity are helping the GMCs in starbursting mergers collapse and form stars.
more »
« less
- Award ID(s):
- 2009679
- PAR ID:
- 10421320
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 950
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 56
- Size(s):
- Article No. 56
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Determining the physical processes that control galactic-scale star formation rates is essential for an improved understanding of galaxy evolution. The role of orbital shear is currently unclear, with some models expecting reduced star formation rates and efficiencies with increasing shear, e.g., if shear stabilizes gas against gravitational collapse, while others predicting enhanced rates, e.g., if shear-driven collisions between giant molecular clouds trigger star formation. Expanding on the analysis of 16 galaxies by C. Suwannajak et al., we assess the shear dependence of star formation efficiency (SFE) per orbital time (ϵorb) in 49 galaxies selected from the PHANGS-ALMA survey. In particular, we test a prediction of the shear-driven giant molecular cloud (GMC) collision model thatϵorb∝ (1–0.7β), where , i.e., SFE per orbital time declines with decreasing shear. We fit the functionϵorb=ϵorb,0(1 −αCCβ) findingαCC≃ 0.76 ± 0.16; an alternative fit withϵorbnormalized by the median value in each galaxy yields . These results are in good agreement with the prediction of the shear-driven GMC collision theory. We also examine the impact of a galactic bar onϵorbfinding a modest decrease in SFE in the presence of a bar, which can be attributed to lower rates of shear in these regions. We discuss the implications of our results for the GMC life cycle and environmental dependence of star formation activity.more » « less
-
Abstract Determining how the galactic environment, especially the high gas densities and complex dynamics in bar-fed galaxy centers, alters the star formation efficiency (SFE) of molecular gas is critical to understanding galaxy evolution. However, these same physical or dynamical effects also alter the emissivity properties of CO, leading to variations in the CO-to-H2conversion factor (αCO) that impact the assessment of the gas column densities and thus of the SFE. To address such issues, we investigate the dependence ofαCOon the local CO velocity dispersion at 150 pc scales using a new set of dust-basedαCOmeasurements and propose a newαCOprescription that accounts for CO emissivity variations across galaxies. Based on this prescription, we estimate the SFE in a sample of 65 galaxies from the PHANGS–Atacama Large Millimeter/submillimeter Array survey. We find increasing SFE toward high-surface-density regions like galaxy centers, while using a constant or metallicity-basedαCOresults in a more homogeneous SFE throughout the centers and disks. Our prescription further reveals a mean molecular gas depletion time of 700 Myr in the centers of barred galaxies, which is overall three to four times shorter than in nonbarred galaxy centers or the disks. Across the galaxy disks, the depletion time is consistently around 2–3 Gyr, regardless of the choice ofαCOprescription. All together, our results suggest that the high level of star formation activity in barred centers is not simply due to an increased amount of molecular gas, but also to an enhanced SFE compared to nonbarred centers or disk regions.more » « less
-
Abstract Measurements of the star formation efficiency (SFE) of giant molecular clouds (GMCs) in the Milky Way generally show a large scatter, which could be intrinsic or observational. We use magnetohydrodynamic simulations of GMCs (including feedback) to forward-model the relationship between the true GMC SFE and observational proxies. We show that individual GMCs trace broad ranges of observed SFE throughout collapse, star formation, and disruption. Low measured SFEs ($${\ll} 1\hbox{ per cent}$$) are ‘real’ but correspond to early stages; the true ‘per-freefall’ SFE where most stars actually form can be much larger. Very high ($${\gg} 10\hbox{ per cent}$$) values are often artificially enhanced by rapid gas dispersal. Simulations including stellar feedback reproduce observed GMC-scale SFEs, but simulations without feedback produce 20× larger SFEs. Radiative feedback dominates among mechanisms simulated. An anticorrelation of SFE with cloud mass is shown to be an observational artefact. We also explore individual dense ‘clumps’ within GMCs and show that (with feedback) their bulk properties agree well with observations. Predicted SFEs within the dense clumps are ∼2× larger than observed, possibly indicating physics other than feedback from massive (main-sequence) stars is needed to regulate their collapse.more » « less
-
Abstract We present the demography of the dynamics and gas mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015–0.195Z⊙and low stellar masses of 104–108M⊙in the local universe. We conduct deep optical integral field spectroscopy (IFS) for the low-mass EMPGs with the medium-high resolution (R= 7500) grism of the 8 m Subaru FOCAS IFU instrument by the EMPRESS 3D survey, and investigate the Hαemission of the EMPGs. Exploiting the resolution high enough for the low-mass galaxies, we derive gas dynamics with the Hαlines by the fitting of three-dimensional disk models. We obtain an average maximum rotation velocity (vrot) of 15 ± 3 km s−1and an average intrinsic velocity dispersion (σ0) of 27 ± 10 km s−1for 15 spatially resolved EMPGs out of 33 EMPGs, and find that all 15 EMPGs havevrot/σ0< 1 suggesting dispersion-dominated systems. There is a clear decreasing trend ofvrot/σ0with the decreasing stellar mass and metallicity. We derive the gas mass fraction (fgas) for all 33 EMPGs, and find no clear dependence on stellar mass and metallicity. Thesevrot/σ0andfgastrends should be compared with young high-zgalaxies observed by the forthcoming JWST IFS programs to understand the physical origins of the EMPGs in the local universe.more » « less