Planetary nebula (PN) surveys in systems beyond ∼10 Mpc often find high-excitation, point-like sources with [O
- Award ID(s):
- 2206090
- NSF-PAR ID:
- 10421337
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 950
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 59
- Size(s):
- Article No. 59
- Sponsoring Org:
- National Science Foundation
More Like this
-
Aims. We perform a deep survey of planetary nebulae (PNe) in the spiral galaxy NGC 300 to construct its planetary nebula luminosity function (PNLF). We aim to derive the distance using the PNLF and to probe the characteristics of the most luminous PNe.Methods. We analysed 44 fields observed with MUSE at the VLT, covering a total area of ∼11 kpc2. We find [OIII ]λ 5007 sources using the differential emission line filter (DELF) technique. We identified PNe through spectral classification with the aid of the BPT diagram. The PNLF distance was derived using the maximum likelihood estimation technique. For the more luminous PNe, we also measured their extinction using the Balmer decrement. We estimated the luminosity and effective temperature of the central stars of the luminous PNe based on estimates of the excitation class and the assumption of optically thick nebulae.Results. We identify 107 PNe and derive a most-likely distance modulus $ (m-M)_0 = 26.48^{+0.11}_{-0.26} $ ($ d = 1.98^{+0.10}_{-0.23} $ Mpc). We find that the PNe at the PNLF cutoff exhibit relatively low extinction, with some high-extinction cases caused by local dust lanes. We present the lower limit luminosities and effective temperatures of the central stars for some of the brighter PNe. We also identify a few Type I PNe that come from a young population with progenitor masses > 2.5M ⊙but do not populate the PNLF cutoff.Conclusions. The spatial resolution and spectral information of MUSE allow precise PN classification and photometry. These capabilities also enable us to resolve possible contamination by diffuse gas and dust, improving the accuracy of the PNLF distance to NGC 300. -
Abstract Thanks to the MUSE integral field spectrograph on board the Very Large Telescope (VLT), extragalactic distance measurements with the [O
iii ]λ 5007 planetary nebula luminosity function (PNLF) are now possible out to ∼40 Mpc. Here we analyze the VLT/MUSE data for 20 galaxies from the ESO public archive to identify the systems’ planetary nebulae (PNe) and determine their PNLF distances. Three of the galaxies do not contain enough PNe for a robust measure of the PNLF, and the results for one other system are compromised of the galaxy’s internal extinction. However, we obtain robust PNLF distances for the remaining 16 galaxies, two of which are isolated and beyond 30 Mpc in a relatively unperturbed Hubble flow. From these data, we derive a Hubble constant of 74.2 ± 7.2 (stat) ±3.7 (sys) km s−1Mpc−1, a value that is very similar to that found from other quality indicators (e.g., Cepheids, the tip of the red giant branch, and surface brightness fluctuations). At present, the uncertainty is dominated by the small number of suitable galaxies in the ESO archive and their less-than-ideal observing conditions and calibrations. Based on our experience with these systems, we identify the observational requirements necessary for the PNLF to yield a competitive value forH 0that is independent of the Type Ia supernova distance scale. -
ABSTRACT We present a possible evolutionary pathway to form planetary nebulae (PNe) with close neutron star (NS)–white dwarf (WD) binary central stars. By employing the binary population synthesis technique, we find that the evolution involves two common envelope evolution (CEE) phases and a core collapse supernova explosion between them that forms the NS. Later the lower mass star engulfs the NS as it becomes a red giant, a process that leads to the second CEE phase and to the ejection of the envelope. This leaves a hot horizontal branch star that evolves to become a helium WD and an expanding nebula. Both the WD and the NS power the nebula. The NS in addition might power a pulsar wind nebula inside the expanding PN. From our simulations we find that the Galactic formation rate of NS–WD PNe is $1.8 \times 10^{-5}\, {\rm yr}^{-1}$ while the Galactic formation rate of all PNe is $0.42 \, {\rm yr}^{-1}$. There is a possibility that one of the observed Galactic PNe might be a NS–WD PN, and a few NS–WD PNe might exist in the Galaxy. The central binary systems might be sources for future gravitational wave detectors like LISA, and possibly of electromagnetic telescopes.
-
Abstract We present results from an optical search for Local Group dwarf galaxy candidates associated with the Ultra-Compact High Velocity Clouds (UCHVCs) discovered by the ALFALFA neutral hydrogen survey. The ALFALFA UCHVCs are isolated, compact H
i clouds with projected sizes, velocities, and estimated Hi masses that suggest they may be nearby dwarf galaxies, but that have no clear counterpart in existing optical survey data. We observed 26 UCHVCs with the WIYN 3.5 m telescope and One Degree Imager (ODI) in two broadband filters and searched the images for resolved stars with properties that match those of stars in typical dwarf galaxies at distances <2.5 Mpc. We identify one promising dwarf galaxy candidate at a distance of ∼570 kpc associated with the UCHVC AGC 268071, and five other candidates that may deserve additional follow-up. We carry out a detailed analysis of ODI imaging of a UCHVC that is close in both projected distance and radial velocity to the outer-halo Milky Way globular cluster Pal 3. We also use our improved detection methods to reanalyze images of five UCHVCs that were found to have possible optical counterparts during the first phase of the project, and confirm the detection of a possible stellar counterpart to the UCHVC AGC 249525 at an estimated distance of ∼2 Mpc. We compare the optical and Hi properties of the dwarf galaxy candidates to the results from recent theoretical simulations that model satellite galaxy populations in group environments, as well as to the observed properties of galaxies in and around the Local Group. -
Abstract We present Young Supernova Experiment
grizy photometry of SN 2021hpr, the third Type Ia supernova sibling to explode in the Cepheid calibrator galaxy, NGC 3147. Siblings are useful for improving SN-host distance estimates and investigating their contributions toward the SN Ia intrinsic scatter (post-standardization residual scatter in distance estimates). We thus develop a principled Bayesian framework for analyzing SN Ia siblings. At its core is the cosmology-independent relative intrinsic scatter parameter,σ Rel: the dispersion of siblings distance estimates relative to one another within a galaxy. It quantifies the contribution toward the total intrinsic scatter,σ 0, from within-galaxy variations about the siblings’ common properties. It also affects the combined distance uncertainty. We present analytic formulae for computing aσ Relposterior from individual siblings distances (estimated using any SN model). Applying a newly trainedBayeSN model, we fit the light curves of each sibling in NGC 3147 individually, to yield consistent distance estimates. However, the wideσ Relposterior meansσ Rel≈σ 0is not ruled out. We thus combine the distances by marginalizing overσ Relwith an informative prior:σ Rel∼U (0,σ 0). Simultaneously fitting the trio’s light curves improves constraints on distanceand each sibling’s individual dust parameters, compared to individual fits. Higher correlation also tightens dust parameter constraints. Therefore,σ Relmarginalization yields robust estimates of siblings distances for cosmology, as well as dust parameters for sibling–host correlation studies. Incorporating NGC 3147's Cepheid distance yieldsH 0= 78.4 ± 6.5 km s−1Mpc−1. Our work motivates analyses of homogeneous siblings samples, to constrainσ Reland its SN-model dependence.