skip to main content


Title: MUSE crowded field 3D spectroscopy in NGC 300: IV. Planetary nebula luminosity function

Aims.We perform a deep survey of planetary nebulae (PNe) in the spiral galaxy NGC 300 to construct its planetary nebula luminosity function (PNLF). We aim to derive the distance using the PNLF and to probe the characteristics of the most luminous PNe.

Methods.We analysed 44 fields observed with MUSE at the VLT, covering a total area of ∼11 kpc2. We find [O III]λ5007 sources using the differential emission line filter (DELF) technique. We identified PNe through spectral classification with the aid of the BPT diagram. The PNLF distance was derived using the maximum likelihood estimation technique. For the more luminous PNe, we also measured their extinction using the Balmer decrement. We estimated the luminosity and effective temperature of the central stars of the luminous PNe based on estimates of the excitation class and the assumption of optically thick nebulae.

Results.We identify 107 PNe and derive a most-likely distance modulus $ (m-M)_0 = 26.48^{+0.11}_{-0.26} $ ($ d = 1.98^{+0.10}_{-0.23} $ Mpc). We find that the PNe at the PNLF cutoff exhibit relatively low extinction, with some high-extinction cases caused by local dust lanes. We present the lower limit luminosities and effective temperatures of the central stars for some of the brighter PNe. We also identify a few Type I PNe that come from a young population with progenitor masses > 2.5 Mbut do not populate the PNLF cutoff.

Conclusions.The spatial resolution and spectral information of MUSE allow precise PN classification and photometry. These capabilities also enable us to resolve possible contamination by diffuse gas and dust, improving the accuracy of the PNLF distance to NGC 300.

 
more » « less
Award ID(s):
2206090
NSF-PAR ID:
10511979
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
671
ISSN:
0004-6361
Page Range / eLocation ID:
A142
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Thanks to the MUSE integral field spectrograph on board the Very Large Telescope (VLT), extragalactic distance measurements with the [Oiii]λ5007 planetary nebula luminosity function (PNLF) are now possible out to ∼40 Mpc. Here we analyze the VLT/MUSE data for 20 galaxies from the ESO public archive to identify the systems’ planetary nebulae (PNe) and determine their PNLF distances. Three of the galaxies do not contain enough PNe for a robust measure of the PNLF, and the results for one other system are compromised of the galaxy’s internal extinction. However, we obtain robust PNLF distances for the remaining 16 galaxies, two of which are isolated and beyond 30 Mpc in a relatively unperturbed Hubble flow. From these data, we derive a Hubble constant of 74.2 ± 7.2 (stat) ±3.7 (sys) km s−1Mpc−1, a value that is very similar to that found from other quality indicators (e.g., Cepheids, the tip of the red giant branch, and surface brightness fluctuations). At present, the uncertainty is dominated by the small number of suitable galaxies in the ESO archive and their less-than-ideal observing conditions and calibrations. Based on our experience with these systems, we identify the observational requirements necessary for the PNLF to yield a competitive value forH0that is independent of the Type Ia supernova distance scale.

     
    more » « less
  2. Abstract

    Planetary nebula (PN) surveys in systems beyond ∼10 Mpc often find high-excitation, point-like sources with [Oiii]λ5007 fluxes greater than the apparent bright-end cutoff of the planetary nebula luminosity function (PNLF). Here we identify PN superpositions as one likely cause for the phenomenon and describe the proper procedures for deriving PNLF distances when object blends are a possibility. We apply our technique to two objects: a model Virgo-distance elliptical galaxy observed through a narrowband interference filter, and the Fornax lenticular galaxy NGC 1380 surveyed with the MUSE integral-field unit spectrograph. Our analyses show that even when the most likely distance to a galaxy is unaffected by the possible presence of PN superpositions, the resultant value will still be biased toward too small a distance due to the asymmetrical nature of the error bars. We discuss the future of the PNLF in an era where current ground-based instrumentation can push the technique to distances beyond ∼35 Mpc.

     
    more » « less
  3. The 12C/13C ratio has been measured toward a sample of planetary nebulae (PNe) using millimeter observations of CO, HCN, HNC, CN, and other species, conducted with the 12 m antenna and the Submillimeter Telescope of the Arizona Radio Observatory. The observed nebulae spanned the entire lifetime of PNe, from ∼900 to 12,000 yr, and include well-known objects such as NGC 7293 (Helix), NGC 6720 (Ring), and NGC 2440, as well as relatively unexplored nebulae (M3–28, M2–48, and M3–55). In most cases, multiple molecules and transitions were used in the ratio determination, resulting in the most accurate values available to date, with 10%–40% uncertainties. The ratios found were unexpectedly low, lying in the range 12C/13C ∼1.0 ± 0.7–13.2 ± 4.9, with an average value of 3.7—drastically less than found in the envelopes of C-rich AGB stars, and, in some cases, lower than the minimum value achieved in equilibrium CNO burning. Such low values are expected for the two O-rich nebulae studied (M2–9 and M2–48), because of insufficient third dredge-up events. However, most of the PNe observed were clearly carbon-rich, as deduced from the large number of C-bearing molecules present in them. Because nucleosynthesis ceases in the PN stage, both the C/O and the 12C/13C ratios must reflect abundances at the end of the AGB. These consistently low 12C/13C ratios, combined with the bipolar/multipolar morphologies of all planetary nebulae observed, suggest an explosive process involving proton-capture occurred at the AGB–PN transition. 
    more » « less
  4. Abstract

    Low- and intermediate-mass (0.8M<M< 8M) stars that evolve into planetary nebulae (PNe) play an important role in tracing and driving Galactic chemical evolution. Spectroscopy of PNe enables access to both the initial composition of their progenitor stars and products of their internal nucleosynthesis, but determining accurate ionic and elemental abundances of PNe requires high-quality optical spectra. We obtained new optical spectra of eight highly-extincted PNe with limited optical data in the literature using the Low Resolution Spectrograph 2 on the Hobby–Eberly Telescope. Extinction coefficients, electron temperatures and densities, and ionic and elemental abundances of up to 11 elements (He, N, O, Ne, S, Cl, Ar, K, Fe, Kr, and Xe) are determined for each object in our sample. Where available, astrometric data from Gaia eDR3 is used to kinematically characterize the probability that each object belongs to the Milky Way's thin disk, thick disk, or halo. Four of the PNe show kinematic and chemical signs of thin disk membership, while two may be members of the thick disk. The remaining two targets lack Gaia data, but their solar O, Ar, and Cl abundances suggest thin disk membership. Additionally, we report the detection of broad emission features from the central star of M 3–35. Our results significantly improve the available information on the nebular parameters and chemical compositions of these objects, which can inform future analyses.

     
    more » « less
  5. Abstract

    We used high-resolution [Cii] 158μm mapping of two nebulae IC 59 and IC 63 from SOFIA/upGREAT in conjunction with ancillary data of the gas, dust, and polarization to probe the kinematics, structure, and magnetic properties of their photodissociation regions (PDRs). The nebulae are part of the Sh 2-185 Hiiregion that is illuminated by the B0 IVe starγCas. The velocity structure of each PDR changes with distance fromγCas, which is consistent with driving by the radiation. Based on previous far-ultraviolet (FUV) flux measurements of, and the known distance to,γCas, along with the predictions of 3D distances to the clouds, we estimated the FUV radiation field strength (G0) at the clouds. Assuming negligible extinction between the star and clouds, we find their 3D distances fromγCas. For IC 63, our results are consistent with earlier estimates of distance from Andersson et al., locating the cloud at ∼2 pc fromγCas at an angle of 58° to the plane of the sky behind the star. For IC 59, we derive a distance of 4.5 pc at an angle of 70° in front of the star. We do not detect any significant correlation between the orientation of the magnetic field and the velocity gradients of [Cii] gas, which indicates a moderate magnetic field strength. The kinetic energy in IC 63 is estimated to be an order of 10 higher than the magnetic energies. This suggests that kinetic pressure in this nebula is dominant.

     
    more » « less