skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MUSE crowded field 3D spectroscopy in NGC 300: IV. Planetary nebula luminosity function
Aims.We perform a deep survey of planetary nebulae (PNe) in the spiral galaxy NGC 300 to construct its planetary nebula luminosity function (PNLF). We aim to derive the distance using the PNLF and to probe the characteristics of the most luminous PNe. Methods.We analysed 44 fields observed with MUSE at the VLT, covering a total area of ∼11 kpc2. We find [O III]λ5007 sources using the differential emission line filter (DELF) technique. We identified PNe through spectral classification with the aid of the BPT diagram. The PNLF distance was derived using the maximum likelihood estimation technique. For the more luminous PNe, we also measured their extinction using the Balmer decrement. We estimated the luminosity and effective temperature of the central stars of the luminous PNe based on estimates of the excitation class and the assumption of optically thick nebulae. Results.We identify 107 PNe and derive a most-likely distance modulus $$ (m-M)_0 = 26.48^{+0.11}_{-0.26} $$ ($$ d = 1.98^{+0.10}_{-0.23} $$ Mpc). We find that the PNe at the PNLF cutoff exhibit relatively low extinction, with some high-extinction cases caused by local dust lanes. We present the lower limit luminosities and effective temperatures of the central stars for some of the brighter PNe. We also identify a few Type I PNe that come from a young population with progenitor masses > 2.5 Mbut do not populate the PNLF cutoff. Conclusions.The spatial resolution and spectral information of MUSE allow precise PN classification and photometry. These capabilities also enable us to resolve possible contamination by diffuse gas and dust, improving the accuracy of the PNLF distance to NGC 300.  more » « less
Award ID(s):
2206090
PAR ID:
10511979
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
671
ISSN:
0004-6361
Page Range / eLocation ID:
A142
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Thanks to the MUSE integral field spectrograph on board the Very Large Telescope (VLT), extragalactic distance measurements with the [Oiii]λ5007 planetary nebula luminosity function (PNLF) are now possible out to ∼40 Mpc. Here we analyze the VLT/MUSE data for 20 galaxies from the ESO public archive to identify the systems’ planetary nebulae (PNe) and determine their PNLF distances. Three of the galaxies do not contain enough PNe for a robust measure of the PNLF, and the results for one other system are compromised of the galaxy’s internal extinction. However, we obtain robust PNLF distances for the remaining 16 galaxies, two of which are isolated and beyond 30 Mpc in a relatively unperturbed Hubble flow. From these data, we derive a Hubble constant of 74.2 ± 7.2 (stat) ±3.7 (sys) km s−1Mpc−1, a value that is very similar to that found from other quality indicators (e.g., Cepheids, the tip of the red giant branch, and surface brightness fluctuations). At present, the uncertainty is dominated by the small number of suitable galaxies in the ESO archive and their less-than-ideal observing conditions and calibrations. Based on our experience with these systems, we identify the observational requirements necessary for the PNLF to yield a competitive value forH0that is independent of the Type Ia supernova distance scale. 
    more » « less
  2. We examine the relationship between circumnebular extinction and core mass for sets of [O III]-bright planetary nebulae (PNe) in the Large Magellanic Cloud and M31. We confirm that for PNe within 1 magnitude of the planetary nebula luminosity function’s (PNLF’s) bright-end cutoff magnitude (M*), higher core-mass PNe are disproportionally affected by greater circumnebular extinction. We show that this result can explain why the PNLF cutoff is so insensitive to population age. In younger populations, the higher-mass, higher-luminosity cores experience greater circumnebular extinction from the dust created by their asymptotic giant branch (AGB) progenitors compared to the lower-mass cores. We further show that when our core-mass–nebular extinction law is combined with post-AGB stellar evolutionary models, the result is a large range of population ages where the brightest PNe all have nearly identical [O III] luminosities. Finally, we note that while there is some uncertainty about whether the oldest stellar populations can produce PNe as bright as M*, this issue is resolved if the initial–final mass relation (IFMR) for the lowest-mass stars results in slightly more massive cores, as observed in some clusters. Alternatively, introducing a small amount of intrinsic scatter (0.022 Msun) into the IFMR also addresses this uncertainty. 
    more » « less
  3. Abstract Planetary nebula (PN) surveys in systems beyond ∼10 Mpc often find high-excitation, point-like sources with [Oiii]λ5007 fluxes greater than the apparent bright-end cutoff of the planetary nebula luminosity function (PNLF). Here we identify PN superpositions as one likely cause for the phenomenon and describe the proper procedures for deriving PNLF distances when object blends are a possibility. We apply our technique to two objects: a model Virgo-distance elliptical galaxy observed through a narrowband interference filter, and the Fornax lenticular galaxy NGC 1380 surveyed with the MUSE integral-field unit spectrograph. Our analyses show that even when the most likely distance to a galaxy is unaffected by the possible presence of PN superpositions, the resultant value will still be biased toward too small a distance due to the asymmetrical nature of the error bars. We discuss the future of the PNLF in an era where current ground-based instrumentation can push the technique to distances beyond ∼35 Mpc. 
    more » « less
  4. Abstract The planetary nebula NGC 6720, also known as the “Ring Nebula,” is one of the most iconic examples of nearby planetary nebulae whose morphologies present a challenge to our theoretical understanding of the processes that govern the deaths of most stars in the Universe that evolve on a Hubble time. We present new imaging with JWST of the central star of this planetary nebula (CSPN) and its close vicinity, in the near-to-mid-IR wavelength range. We find the presence of a dust cloud around the CSPN, both from the spectral energy distribution at wavelengths ≳5μm as well as from radially extended emission in the 7.7, 10, and 11.3μm images. From the modeling of these data, we infer that the CSPN has a luminosity of 310Land is surrounded by a dust cloud with a size of ∼2600 au, consisting of relatively small amorphous silicate dust grains (radius ∼0.01μm) with a total mass of 1.9 × 10−6M. However, our best-fit model shows a significant lack of extended emission at 7.7μm—we show that such emission can arise from a smaller (7.3 × 10−7M) but uncertain mass of (stochastically heated) ionized polycyclic aromatic hydrocarbon (PAHs). However, the same energetic radiation also rapidly destroys PAH molecules, suggesting that these are most likely being continuously replenished, via the outgassing of cometary bodies and/or the collisional grinding of planetesimals. We also find significant photometric variability of the central source that could be due to the presence of a close dwarf companion of mass ≤0.1M
    more » « less
  5. The 12C/13C ratio has been measured toward a sample of planetary nebulae (PNe) using millimeter observations of CO, HCN, HNC, CN, and other species, conducted with the 12 m antenna and the Submillimeter Telescope of the Arizona Radio Observatory. The observed nebulae spanned the entire lifetime of PNe, from ∼900 to 12,000 yr, and include well-known objects such as NGC 7293 (Helix), NGC 6720 (Ring), and NGC 2440, as well as relatively unexplored nebulae (M3–28, M2–48, and M3–55). In most cases, multiple molecules and transitions were used in the ratio determination, resulting in the most accurate values available to date, with 10%–40% uncertainties. The ratios found were unexpectedly low, lying in the range 12C/13C ∼1.0 ± 0.7–13.2 ± 4.9, with an average value of 3.7—drastically less than found in the envelopes of C-rich AGB stars, and, in some cases, lower than the minimum value achieved in equilibrium CNO burning. Such low values are expected for the two O-rich nebulae studied (M2–9 and M2–48), because of insufficient third dredge-up events. However, most of the PNe observed were clearly carbon-rich, as deduced from the large number of C-bearing molecules present in them. Because nucleosynthesis ceases in the PN stage, both the C/O and the 12C/13C ratios must reflect abundances at the end of the AGB. These consistently low 12C/13C ratios, combined with the bipolar/multipolar morphologies of all planetary nebulae observed, suggest an explosive process involving proton-capture occurred at the AGB–PN transition. 
    more » « less