skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Degenerate Distributed Feedback Photonic Structure With Two Gratings Exhibiting Degenerate Band Edge
Award ID(s):
1711975
PAR ID:
10421493
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Photonics Technology Letters
Volume:
35
Issue:
4
ISSN:
1041-1135
Page Range / eLocation ID:
187 to 190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We prove a decomposition formula of logarithmic Gromov–Witten invariants in a degeneration setting. A one-parameter log smooth family $$X \longrightarrow B$$ with singular fibre over $$b_0\in B$$ yields a family $$\mathscr {M}(X/B,\beta ) \longrightarrow B$$ of moduli stacks of stable logarithmic maps. We give a virtual decomposition of the fibre of this family over $$b_0$$ in terms of rigid tropical maps to the tropicalization of $X/B$ . This generalizes one aspect of known results in the case that the fibre $$X_{b_0}$$ is a normal crossings union of two divisors. We exhibit our formulas in explicit examples. 
    more » « less
  2. Abstract At the low temperature and high density conditions of a neutron star crust neutrons are degenerate. In this work, we study the effect of this degeneracy on the capture rates of neutrons on neutron rich nuclei in accreted crusts. We use a statistical Hauser–Feshbach model to calculate neutron capture rates and find that neutron degeneracy can increase rates significantly. Changes increase from a factor of a few to many orders of magnitude near the neutron drip line. We also quantify uncertainties due to model inputs for masses,γ-strength functions, and level densities. We find that uncertainties increase dramatically away from stability and that degeneracy tends to increase these uncertainties further, except for cases near the neutron drip line where degeneracy leads to more robustness. As in the case of capture of classically distributed neutrons, variations in the mass model have the strongest impact. Corresponding variations in the reaction rates can be as high as 3–4 orders of magnitude, and be more than 5 times larger than under classical conditions. To ease the incorporation of neutron degeneracy in nucleosynthesis networks, we provide tabulated results of capture rates as well as analytical expressions as function of temperature and neutron chemical potential, for proton numbers between 3 ≤Z≤ 85, derived from fits to our numerical results. Fits are based on a new parametrization that complements previously employed power law approximations with additional Lorentzian terms that account for low energy resonances, significantly improving accuracy. 
    more » « less