skip to main content


Title: Analysis of UAV Thermal Soaring via Hawk-Inspired Swarm Interaction
A swarm of unmanned aerial vehicles (UAVs) can be used for many applications, including disaster relief, search and rescue, and establishing communication networks, due to its mobility, scalability, and robustness to failure. However, a UAV swarm’s performance is typically limited by each agent’s stored energy. Recent works have considered the usage of thermals, or vertical updrafts of warm air, to address this issue. One challenge lies in a swarm of UAVs detecting and taking advantage of these thermals. Inspired by hawks, a swarm could take advantage of thermals better than individuals due to the swarm’s distributed sensing abilities. To determine which emergent behaviors increase survival time, simulation software was created to test the behavioral models of UAV gliders around thermals. For simplicity and robustness, agents operate with limited information about other agents. The UAVs’ motion was implemented as a Boids model, replicating the behavior of flocking birds through cohesion, separation, and alignment forces. Agents equipped with a modified behavioral model exhibit dynamic flocking behavior, including relative ascension-based cohesion and relative height-based separation and alignment. The simulation results show the agents flocking to thermals and improving swarm survival. These findings present a promising method to extend the flight time of autonomous UAV swarms.  more » « less
Award ID(s):
1851815
NSF-PAR ID:
10421639
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Biomimetics
Volume:
8
Issue:
1
ISSN:
2313-7673
Page Range / eLocation ID:
124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a multi-agent flocking scheme for real-time control of homogeneous unmanned aerial vehicles (UAVs) based on smoothed particle hydrodynamics. Swarm cohe- sion, collision avoidance, and velocity consensus are concurrently satisfied by characterizing the emerging macroscopic flock as a continuous fluid. Two vital implementation issues are addressed in particular including latency in information fusion and directionality of com- munication due to antenna patterns. Symmetric control forces are achieved by meticulous scheduling of inter-vehicle communication to sustain the motion stability of the flock. A gener- alized, anisotropic smoothing kernel that takes into account the relative position and attitude between agents is adopted to address potential flocking instability introduced by communi- cation anisotropy due to the antenna radiation pattern. The feasibility of the technique is demonstrated experimentally using a single UAV avoiding a virtual obstacle. 
    more » « less
  2. The house hunting behavior of the Temnothorax albipennis ant allows the colony to explore several nest choices and agree on the best one. Their behavior serves as the basis for many bio-inspired swarm models to solve the same problem. However, many of the existing site selection models in both insect colony and swarm literature test the model’s accuracy and decision time only on setups where all potential site choices are equidistant from the swarm’s starting location. These models do not account for the geographic challenges that result from site choices with different geometry. For example, although actual ant colonies are capable of consistently choosing a higher quality, further site instead of a lower quality, closer site, existing models are much less accurate in this scenario. Existing models are also more prone to committing to a low quality site if it is on the path between the agents’ starting site and a higher quality site. We present a new model for the site selection problem and verify via simulation that is able to better handle these geographic challenges. Our results provide insight into the types of challenges site selection models face when distance is taken into account. Our work will allow swarms to be robust to more realistic situations where sites could be distributed in the environment in many different ways. 
    more » « less
  3. The house hunting behavior of the Temnothorax albipennis ant allows the colony to explore several nest choices and agree on the best one. Their behavior serves as the basis for many bio-inspired swarm models to solve the same problem. However, many of the existing site selection models in both insect colony and swarm literature test the model’s accuracy and decision time only on setups where all potential site choices are equidistant from the swarm’s starting location. These models do not account for the geographic challenges that result from site choices with different geometry. For example, although actual ant colonies are capable of consistently choosing a higher quality, further site instead of a lower quality, closer site, existing models are much less accurate in this scenario. Existing models are also more prone to committing to a low quality site if it is on the path between the agents’ starting site and a higher quality site. We present a new model for the site selection problem and verify via simulation that is able to better handle these geographic challenges. Our results provide insight into the types of challenges site selection models face when distance is taken into account. Our work will allow swarms to be robust to more realistic situations where sites could be distributed in the environment in many different ways. 
    more » « less
  4. null (Ed.)
    To mitigate the long-term spectrum crunch problem, the FCC recently opened up the 6 GHz frequency band for unlicensed use. However, the existing spectrum sharing strategies cannot support the operation of access points in moving vehicles such as cars and UAVs. This is primarily because of the directionality-based spectrum sharing among the incumbent systems in this band and the high mobility of the moving vehicles, which together make it challenging to control the cross-system interference. In this paper we propose SwarmShare, a mobility-resilient spectrum sharing framework for swarm UAV networking in the 6 GHz band. We first present a mathematical formulation of the SwarmShare problem, where the objective is to maximize the spectral efficiency of the UAV network by jointly controlling the flight and transmission power of the UAVs and their association with the ground users, under the interference constraints of the incumbent system. We find that there are no closed-form mathematical models that can be used characterize the statistical behaviors of the aggregate interference from the UAVs to the incumbent system. Then we propose a data-driven three-phase spectrum sharing approach, including Initial Power Enforcement, Offline-dataset Guided Online Power Adaptation, and Reinforcement Learning-based UAV Optimization. We validate the effectiveness of SwarmShare through an extensive simulation campaign. Results indicate that, based on SwarmShare, the aggregate interference from the UAVs to the incumbent system can be effectively controlled below the target level without requiring the real-time cross-system channel state information. The mobility resilience of SwarmShare is also validated in coexisting networks with no precise UAV location information. 
    more » « less
  5. null (Ed.)
    Honeybee swarms are a landmark example of collective behavior. To become a coherent swarm, bees locate their queen by tracking her pheromones. But how can distant individuals exploit these chemical signals, which decay rapidly in space and time? Here, we combine a behavioral assay with the machine vision detection of organism location and scenting (pheromone propagation via wing fanning) behavior to track the search and aggregation dynamics of the honeybee Apis mellifera L. We find that bees collectively create a scenting-mediated communication network by arranging in a specific spatial distribution where there is a characteristic distance between individuals and directional signaling away from the queen. To better understand such a flow-mediated directional communication strategy, we developed an agent-based model where bee agents obeying simple, local behavioral rules exist in a flow environment in which the chemical signals diffuse and decay. Our model serves as a guide to exploring how physical parameters affect the collective scenting behavior and shows that increased directional bias in scenting leads to a more efficient aggregation process that avoids local equilibrium configurations of isotropic (nondirectional and axisymmetric) communication, such as small bee clusters that persist throughout the simulation. Our results highlight an example of extended classical stigmergy: Rather than depositing static information in the environment, individual bees locally sense and globally manipulate the physical fields of chemical concentration and airflow. 
    more » « less