skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Outage-Optimized Deployment of UAVs
We consider multiple unmanned aerial vehi- cles (UAVs) serving a density of ground terminals (GTs) as mobile base stations. The objective is to minimize the outage probability of GT-to-UAV transmissions. In this context, the optimal placement of UAVs under different UAV altitude constraints and GT densities is studied. First, using a random deployment argument, a general upper bound on the optimal outage probability is found for any density of GTs and any number of UAVs. Lower bounds on the performance of optimal deployments are also deter- mined. The upper and lower bounds are combined to show that the optimal outage probability decays exponentially with the number of UAVs for GT densities with finite support. Next, the structure of optimal deployments are studied when the common altitude constraint is large. In this case, for a wide class of GT densities, it is shown that all UAVs should be placed to the same location in an optimal deployment. A design implication is that one can use a single multi-antenna UAV as opposed to multiple single-antenna UAVs without loss of optimality. Numerical optimization of UAV deployments are carried out using particle swarm optimization. Simulation results are also presented to confirm the analytical findings.  more » « less
Award ID(s):
1814717
PAR ID:
10118986
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Unmanned Aerial Vehicles (UAVs) often lack the size, weight, and power to support large antenna arrays or a large number of radio chains. Despite such limitations, emerging applications that require the use of swarms, where UAVs form a pattern and coordinate towards a common goal, must have the capability to transmit in any direction in three-dimensional (3D) space from moment to moment. In this work, we design a measurement study to evaluate the role of antenna polarization diversity on UAV systems communicating in arbitrary 3D space. To do so, we construct flight patterns where one transmitting UAV is hovering at a high altitude (80 m) and a receiving UAV hovers at 114 different positions that span 3D space at a radial distance of approximately 20 m along equally-spaced elevation and azimuth angles. To understand the role of diverse antenna polarizations, both UAVs have a horizontally-mounted antenna and a vertically-mounted antenna-each attached to a dedicated radio chain-creating four wireless channels. With this measurement campaign, we seek to understand how to optimally select an antenna orientation and quantify the gains in such selections. 
    more » « less
  2. Vapor loss and molecular absorption make the transmission distance in sub-Terahertz bands a challenge, especially in mobile statues such as UAVs communication. The molecular absorption element is an essential part of the path loss in THz communication channel modeling that cannot be neglected. Along this direction, we investigated the UAV trajectories in sub-THz band. To maximize the secrecy rate of the UAVs communication, an optimization problem has been proposed to jointly optimize the trajectory and transmit power. To enhance the obtained average secrecy rate, MIMO communication and a cooperative UAV jammer strategy were used in this paper. Also, analysis and simulations results were presented to show the performance of UAV-ground communication at THz communications. Finally, Secrecy Outage Probability was obtained for each UAV trajectories in different flight periods to examine the performance of physical layer security added to the UAVground communication at sub-THz communication. 
    more » « less
  3. To integrate unmanned aerial vehicles (UAVs) in future large-scale deployments, a new wireless communication paradigm, namely, the cellular-connected UAV has recently attracted interest. However, the line-of-sight dominant air-to-ground channels along with the antenna pattern of the cellular ground base stations (GBSs) introduce critical interference issues in cellular-connected UAV communications. In particular, the complex antenna pattern and the ground reflection (GR) from the down-tilted antennas create both coverage holes and patchy coverage for the UAVs in the sky, which leads to unreliable connectivity from the underlying cellular network. To overcome these challenges, in this paper, we propose a new cellular architecture that employs an extra set of co-channel antennas oriented towards the sky to support UAVs on top of the existing down-tilted antennas for ground user equipment (GUE). To model the GR stemming from the down-tilted antennas, we propose a path-loss model, which takes both antenna radiation pattern and configuration into account. Next, we formulate an optimization problem to maximize the minimum signal-to-interference ratio (SIR) of the UAVs by tuning the up-tilt (UT) angles of the up-tilted antennas. Since this is an NP-hard problem, we propose a genetic algorithm (GA) based heuristic method to optimize the UT angles of these antennas. After obtaining the optimal UT angles, we integrate the 3GPP Release-10 specified enhanced inter-cell interference coordination (eICIC) to reduce the interference stemming from the down-tilted antennas. Our simulation results based on the hexagonal cell layout show that the proposed interference mitigation method can ensure higher minimum SIRs for the UAVs over baseline methods while creating minimal impact on the SIR of GUEs. 
    more » « less
  4. Performance assessment and optimization for net-works jointly performing caching, computing, and communica-tion (3C) has recently drawn significant attention because many emerging applications require 3C functionality. However, studies in the literature mostly focus on the particular algorithms and setups of such networks, while their theoretical understanding and characterization has been less explored. To fill this gap, this paper conducts the asymptotic (scaling-law) analysis for the delay-outage tradeoff of noise-limited wireless edge networks with joint 3C. In particular, assuming the user requests for different tasks following a Zipf distribution, we derive the analytical expression for the optimal caching policy. Based on this, we next derive the closed-form expression for the optimum outage probability as a function of delay and other network parameters for the case that the Zipf parameter is smaller than 1. Then, for the case that the Zipf parameter is larger than 1, we derive the closed-form expressions for upper and lower bounds of the optimum outage probability. We provide insights and interpretations based on the derived expressions. Computer simulations validate our analytical results and insights. 
    more » « less
  5. This paper explores the nexus of two emerging Internet of Things (IoT) components in precision agriculture, which requires vast amounts of agriculture fields to be monitored from air and soil for food production with efficient resource utilization. On the one hand, unmanned aerial vehicles (UAVs) have gained interest in agricultural aerial inspection due to their ubiquity and observation scale. On the other hand, agricultural IoT devices, including buried soil sensors, have gained interest in improving natural resource efficiency in crop production. In this work, the path loss and fading characteristics in wireless links between a UAV and underground (UG) nodes (Air2UG link) are studied to design a UAV altitude optimization solution. A path loss model is developed for the Air2UG link, including fading in the channel, where fading is modeled using a Rician distribution and validated using the Kolmogorov-Smirnov test. Moreover, Rician-K is found to be dependent on the UAV altitude, which is modeled with a Gaussian function with an RMSE of 0.4-1.3 dB. Furthermore, a novel altitude optimization solution is presented to minimize the bit error rate (BER). Results show that the lowest possible altitude does not always minimize the BER. Optimizing the altitude reduces the Air2UG link BER by as much as 8.6-fold. Likewise, altitude optimization can minimize the impacts of increasing burial depth on the BER. Our results and analysis are the first in this field and can be exploited to optimize the altitude and resources of a UAV node to communicate with the sensors embedded in the soil efficiently. 
    more » « less