skip to main content


Title: Short‐term effects of moderate severity disturbances on forest canopy structure
Abstract

Moderate severity disturbances, those that do not result in stand replacement, play an essential role in ecosystem dynamics. Despite the prevalence of moderate severity disturbances and the significant impacts they impose on forest functioning, little is known about their effects on forest canopy structure and how these effects differ over time across a range of disturbance severities and disturbance types.

Using longitudinal data from the National Ecological Observatory Network project, we assessed the effects of three moderate severity press disturbances (beech bark disease, hemlock woolly adelgid and emerald ash borer, which are characterized by continuous disturbance and sustained mortality) and three moderate severity pulse disturbances (spring cankerworm moth, spongy moth and ground fire, which are associated with discrete and relatively short mortalities) on temperate forest canopy structure in eastern US. We studied (1) how light detection and ranging (LiDAR)‐derived metrics of canopy structure change in response to disturbance and (2) whether initial canopy complexity offsets impact of disturbances on canopy structure over time. We used a mixed‐effects modelling framework which included a non‐linear term for time to represent changes in canopy structure caused by disturbance, and interactions between time and both disturbance intensity and initial canopy complexity.

We discovered that high intensity of both press and pulse disturbances inhibited canopy height growth while low intensity pulse disturbances facilitated it. In addition, high intensity pulse disturbances facilitated increases in the complexity of the canopy over time. Concerning the impact of initial canopy complexity, we found that the initial canopy complexity of disturbed plots altered the effects of moderate disturbances, indicating potential resilience effects.

Synthesis. This study used repeated measurements of LiDAR data to examine the effects of moderate disturbances on various dimensions of forest canopy structure, including height, openness, density and complexity. Our study indicates that both press and pulse disturbances can inhibit canopy height growth over time. However, while the impact of press disturbances on other dimensions of canopy structure could not be clearly detected, likely because of compensatory growth, the impact of pulse disturbances over time was more readily apparent using multi‐temporal LiDAR data. Furthermore, our findings suggest that canopy complexity might help to mitigate the impact of moderate disturbances on canopy structures over time. Overall, our research highlights the usefulness of multi‐temporal LiDAR data for assessing the structural changes in forest canopies caused by moderate severity disturbances.

 
more » « less
Award ID(s):
1638702 1926538
NSF-PAR ID:
10421852
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
111
Issue:
9
ISSN:
0022-0477
Page Range / eLocation ID:
p. 1866-1881
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Intermediate disturbances are an important component of many forest disturbance regimes, with effects on canopy structure and related functions that are highly dependent on the nature and intensity of the perturbation. Ice storms are an important disturbance mechanism in temperate forests that often result in moderate-severity, diffuse canopy damage. However, it has not previously been possible to distinguish the specific effect of ice storm intensity (as ice accretion) from predisturbance stand characteristics and physiographic factors. In this study, we utilized a novel experimental ice storm treatment to evaluate the effects of variable ice accretion levels on forest canopy structure. Our results verified significant impacts of ice storm disturbance on near-term canopy structural reorganization. Canopy openness, light transmission, and complexity increased significantly relative to predisturbance baselines and undisturbed controls. We documented variable impacts with disturbance intensity, as significant canopy changes largely occurred with ice accretion levels of ≥12.7 mm. Repeated ice storm disturbance (two consecutive years) had marginal, rather than compounding, effects on forest canopy structure. Our findings are relevant to understanding how ice storms can affect near-term forest canopy structural reorganization and ecosystem processes and add to a growing base of knowledge on the effects of intermediate disturbances on canopy structure. 
    more » « less
  2. Abstract

    Landslides are common natural disturbances in tropical montane forests. While the geomorphic drivers of landslides in the Andes have been studied, factors controlling post‐landslide forest recovery across the steep climatic and topographic gradients characteristic of tropical mountains are poorly understood.

    Here we use a LiDAR‐derived canopy height map coupled with a 25‐year landslide time‐series map to examine how landslide, topographic and biophysical factors, along with residual vegetation, affect canopy height and heterogeneity in regenerating landslides. We also calculate above‐ground biomass accumulation rates and estimate the time for landslides to recover to mature forest biomass levels.

    We find that age and elevation are the biggest determinants of forest recovery, and that the jump‐start in regeneration that residual vegetation provides lasts for at least 18 years. Our estimates of time to biomass recovery (31.6–37.1 years) are surprisingly rapid, and as a result we recommend that future research pair LiDAR with hyperspectral imagery to estimate forest above‐ground biomass in frequently disturbed landscapes.

    Synthesis. Using a high‐resolution LiDAR dataset and a time‐series inventory of 608 landslides distributed across a wide elevational gradient in Andean montane forest, we show that age and elevation are the most influential predictors of forest canopy height and canopy variability. Other features of landslides, in particular the presence of residual vegetation, shape post‐landslide regeneration trajectories. LiDAR allows for a detailed analysis of forest structural recovery across large landscapes and numbers of disturbances, and provides a reasonable upper bound on above‐ground biomass accumulation rates. However, because this method does not capture the effect of compositional change through succession on above‐ground biomass, wherein high‐wood density species gradually replace light‐wooded pioneer species, it overestimates above‐ground biomass. Given previously estimated stem turnover rates along this elevational gradient, we posit that above‐ground biomass recovery takes at least three times as long as our recovery time estimates based on LiDAR‐derived structure alone.

     
    more » « less
  3. Abstract

    Studies of succession have a long history in ecology, but rigorous tests of general, unifying principles are rare. One barrier to these tests of theory is the paucity of longitudinal studies that span the broad gradients of disturbance severity that characterize large, infrequent disturbances. The cataclysmic eruption of Mount St. Helens (Washington, USA) in 1980 produced a heterogeneous landscape of disturbance conditions, including primary to secondary successional habitats, affording a unique opportunity to explore how rates and patterns of community change relate to disturbance severity, post‐eruption site conditions and time.

    In this novel synthesis, we combined data from three long‐term (c.30‐year) studies to compare rates and patterns of community change across three ‘zones’ representing a gradient of disturbance severity: primary successional blast zone, secondary successional tree blowdown/standing snag zone and secondary successional intact forest canopy/tephra deposit zone.

    Consistent with theory, rates of change in most community metrics (species composition, species richness, species gain/loss and rank abundance) decreased with time across the disturbance gradient. Surprisingly, rates of change were often greatest at intermediate‐severity disturbance and similarly low at high‐ and low‐severity disturbance. There was little evidence of compositional convergence among or within zones, counter to theory. Within zones, rates of change did not differ among ‘site types’ defined by pre‐ or post‐eruption site characteristics (disturbance history, legacy effects or substrate characteristics).

    Synthesis.The hump‐shaped relationships with disturbance severity runs counter to the theory predicting that community change will be slower during primary than during secondary succession. The similarly low rates of change after high‐ and low‐severity disturbance reflect differing sets of controls: seed limitation and abiotic stress in the blast zone vs. vegetative re‐emergence and low light in the tephra zone. Sites subjected to intermediate‐severity disturbance were the most dynamic, supporting species with a greater diversity of regenerative traits and seral roles (ruderal, forest and non‐forest). Succession in this post‐eruption landscape reflects the complex, multifaceted nature of volcanic disturbance (including physical force, heating and burial) and the variety of ways in which biological systems can respond to these disturbance effects. Our results underscore the value of comparative studies of long‐term, ecological processes for testing the assumptions and predictions of successional theory.

     
    more » « less
  4. The Anthropocene is characterized by complex, primarily human‐generated, disturbance regimes that include combinations of long‐term press (e.g. climate change, pollution) and episodic pulse (e.g. cyclonic storms, floods, wildfires, land use change) disturbances. Within any regime, disturbances occur at multiple spatial and temporal scales, creating complex and varied interactions that influence spatiotemporal dynamics in the abundance, distribution and biodiversity of organisms. Moreover, responses to disturbance are context dependent, with the legacies of previous disturbances affecting responses to ensuing perturbations. We use three decades of annual data to evaluate the effects of repeated pulse disturbances and global warming on gastropod populations and communities in Puerto Rico at multiple spatial scales. More specifically, we quantify 1) the relative importance of large‐scale and small‐scale aspects of disturbance on variation in abundance, biodiversity and species composition; and 2) the spatial scales at which populations and communities integrate information in the spatially heterogenous environments created by disturbances. Gastropods do not exhibit consistent decreases in abundance or biodiversity in association with global warming: abundance for many species has increased over time and species richness does not evince a temporal trend. Nonetheless, gastropods are sensitive to hurricane severity, spatial environmental variation and successional trajectories of the flora. In addition, they exhibit context dependent (i.e. legacy effects) responses that are scale dependent. The Puerto Rican biota has evolved in a disturbance‐mediated system. This historical exposure to repeated, severe hurricane‐induced disturbances has imbued the biota with high resistance and resilience to the current disturbance regime, resulting in an ability to persist or thrive under current environmental conditions. Nonetheless, these ecosystems may yet be threatened by worsening direct and indirect effects of climate change. In particular, more frequent and severe hurricanes may prevent the establishment of closed canopy forests, negatively impacting populations and communities that rely on these habitats.

     
    more » « less
  5. Abstract

    Increasing temperatures and human activity are likely to reduce fire return intervals in the seasonal tropics. Anticipating how more frequent fires may alter forest community structure and composition requires understanding how fire intensity and species‐specific responses to fires interact to drive fire‐induced mortality for large numbers of species. We developed an analytical framework to estimate unobserved fire intensities and species‐ and size‐specific susceptibility to fire using observed mortality data.

    We used census data from a 50‐ha forest dynamics plot in western Thailand to better understand species and community responses to a fire that burned60% of the plot in 2005. Trees species, size and status (live, dead) were censused just before the fire (2004) and again 5 years later (2009). We jointly estimated a map of relative fire intensity and species‐specific size‐dependent background and fire‐induced mortality. We then calculated the time required for individuals of each species to reach a fire‐safe size threshold (the age at which the fire‐induced mortality probability was <50%). To better understand community‐level responses to fire, we compared results among different species groups (canopy status, forest‐type association).

    Our model‐derived map of fire intensity closely matched the field survey taken in the days after the fire. On average, individuals growing at the 95th percentile growth rate for most species groups required5 years to reach their species’ fire‐safe size threshold, while individuals growing at the median growth rate required17 years (assuming growth <1 cm diameter at breast height was similar to growth >1 cm). However, understorey species associated with the seasonal evergreen forest took 1.8 times longer than average to reach their fire‐safe size threshold, with one species requiring up to 190 years.

    Synthesis.Our approach provided insights into spatial patterning of fire intensity in a seasonal tropical forest and species‐ and size‐specific susceptibility to fire‐induced mortality. Our results suggest increasing fire frequency will have the greatest impact on slow‐growing understorey species of the evergreen forest. In addition, our model accurately predicts the growing dominance of a fast‐growing understorey species,Croton roxburghii;Euphorbiaceae, common to evergreen and deciduous forests that can reach its fire‐safe size threshold in 1.3 years.

     
    more » « less