skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inverse Scattering Transform for Nonlinear Schrödinger Systems on a Nontrivial Background: A Survey of Classical Results, New Developments and Future Directions
Abstract In this topical review paper we provide a survey of classical and more recent results on the IST for one-dimensional scalar, vector and square matrix NLS systems on the line ($$-\infty<\infty$$ - < x < ) with certain physically relevant non-zero boundary conditions at space infinity, discuss some new developments and applications, and offer some perspectives about future directions on the subject.  more » « less
Award ID(s):
2106488
PAR ID:
10421855
Author(s) / Creator(s):
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Nonlinear Mathematical Physics
Volume:
30
Issue:
2
ISSN:
1776-0852
Page Range / eLocation ID:
p. 317-383
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let$$f$$ f be an analytic polynomial of degree at most$$K-1$$ K 1 . A classical inequality of Bernstein compares the supremum norm of$$f$$ f over the unit circle to its supremum norm over the sampling set of the$$K$$ K -th roots of unity. Many extensions of this inequality exist, often understood under the umbrella of Marcinkiewicz–Zygmund-type inequalities for$$L^{p},1\le p\leq \infty $$ L p , 1 p norms. We study dimension-free extensions of these discretization inequalities in the high-dimension regime, where existing results construct sampling sets with cardinality growing with the total degree of the polynomial. In this work we show that dimension-free discretizations are possible with sampling sets whose cardinality is independent of$$\deg (f)$$ deg ( f ) and is instead governed by the maximumindividualdegree of$$f$$ f ;i.e., the largest degree of$$f$$ f when viewed as a univariate polynomial in any coordinate. For example, we find that for$$n$$ n -variate analytic polynomials$$f$$ f of degree at most$$d$$ d and individual degree at most$$K-1$$ K 1 ,$$\|f\|_{L^{\infty }(\mathbf{D}^{n})}\leq C(X)^{d}\|f\|_{L^{\infty }(X^{n})}$$ f L ( D n ) C ( X ) d f L ( X n ) for any fixed$$X$$ X in the unit disc$$\mathbf{D}$$ D with$$|X|=K$$ | X | = K . The dependence on$$d$$ d in the constant is tight for such small sampling sets, which arise naturally for example when studying polynomials of bounded degree coming from functions on products of cyclic groups. As an application we obtain a proof of the cyclic group Bohnenblust–Hille inequality with an explicit constant$$\mathcal{O}(\log K)^{2d}$$ O ( log K ) 2 d
    more » « less
  2. Abstract We investigate the low moments$$\mathbb {E}[|A_N|^{2q}],\, 0 E [ | A N | 2 q ] , 0 < q 1 of secular coefficients$$A_N$$ A N of the critical non-Gaussian holomorphic multiplicative chaos, i.e. coefficients of$$z^N$$ z N in the power series expansion of$$\exp (\sum _{k=1}^\infty X_kz^k/\sqrt{k})$$ exp ( k = 1 X k z k / k ) , where$$\{X_k\}_{k\geqslant 1}$$ { X k } k 1 are i.i.d. rotationally invariant unit variance complex random variables. Inspired by Harper’s remarkable result on random multiplicative functions, Soundararajan and Zaman recently showed that if each$$X_k$$ X k is standard complex Gaussian,$$A_N$$ A N features better-than-square-root cancellation:$$\mathbb {E}[|A_N|^2]=1$$ E [ | A N | 2 ] = 1 and$$\mathbb {E}[|A_N|^{2q}]\asymp (\log N)^{-q/2}$$ E [ | A N | 2 q ] ( log N ) - q / 2 for fixed$$q\in (0,1)$$ q ( 0 , 1 ) as$$N\rightarrow \infty $$ N . We show that this asymptotics holds universally if$$\mathbb {E}[e^{\gamma |X_k|}]<\infty $$ E [ e γ | X k | ] < for some$$\gamma >2q$$ γ > 2 q . As a consequence, we establish the universality for the tightness of the normalized secular coefficients$$A_N(\log (1+N))^{1/4}$$ A N ( log ( 1 + N ) ) 1 / 4 , generalizing a result of Najnudel, Paquette, and Simm. Another corollary is the almost sure regularity of some critical non-Gaussian holomorphic chaos in appropriate Sobolev spaces. Moreover, we characterize the asymptotics of$$\mathbb {E}[|A_N|^{2q}]$$ E [ | A N | 2 q ] for$$|X_k|$$ | X k | following a stretched exponential distribution with an arbitrary scale parameter, which exhibits a completely different behavior and underlying mechanism from the Gaussian universality regime. As a result, we unveil a double-layer phase transition around the critical case of exponential tails. Our proofs combine Harper’s robust approach with a careful analysis of the (possibly random) leading terms in the monomial decomposition of$$A_N$$ A N
    more » « less
  3. Abstract We consider the following stochastic heat equation$$\begin{aligned} \partial _t u(t,x) = \tfrac{1}{2} \partial ^2_x u(t,x) + b(u(t,x)) + \sigma (u(t,x)) {\dot{W}}(t,x), \end{aligned}$$ t u ( t , x ) = 1 2 x 2 u ( t , x ) + b ( u ( t , x ) ) + σ ( u ( t , x ) ) W ˙ ( t , x ) , defined for$$(t,x)\in (0,\infty )\times {\mathbb {R}}$$ ( t , x ) ( 0 , ) × R , where$${\dot{W}}$$ W ˙ denotes space-time white noise. The function$$\sigma $$ σ is assumed to be positive, bounded, globally Lipschitz, and bounded uniformly away from the origin, and the functionbis assumed to be positive, locally Lipschitz and nondecreasing. We prove that the Osgood condition$$\begin{aligned} \int _1^\infty \frac{\textrm{d}y}{b(y)}<\infty \end{aligned}$$ 1 d y b ( y ) < implies that the solution almost surely blows up everywhere and instantaneously, In other words, the Osgood condition ensures that$$\textrm{P}\{ u(t,x)=\infty \quad \hbox { for all } t>0 \hbox { and } x\in {\mathbb {R}}\}=1.$$ P { u ( t , x ) = for all t > 0 and x R } = 1 . The main ingredients of the proof involve a hitting-time bound for a class of differential inequalities (Remark 3.3), and the study of the spatial growth of stochastic convolutions using techniques from the Malliavin calculus and the Poincaré inequalities that were developed in Chen et al. (Electron J Probab 26:1–37, 2021, J Funct Anal 282(2):109290, 2022). 
    more » « less
  4. Abstract We consider the Boltzmann equation in a convex domain with a non-isothermal boundary of diffuse reflection. For both unsteady/steady problems, we construct solutions belonging to$$W^{1,p}_x$$ W x 1 , p for any$$p<3$$ p < 3 . We prove that the unsteady solution converges to the steady solution in the same Sobolev space exponentially quickly as$$t \rightarrow \infty $$ t
    more » « less
  5. Abstract Given$$g \in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } , let$$\Sigma _g$$ Σ g denote the closed surface of genusgwith a Cantor set removed, if$$g<\infty $$ g < ; or the blooming Cantor tree, when$$g= \infty $$ g = . We construct a family$$\mathfrak B(H)$$ B ( H ) of subgroups of$${{\,\textrm{Map}\,}}(\Sigma _g)$$ Map ( Σ g ) whose elements preserve ablock decompositionof$$\Sigma _g$$ Σ g , andeventually like actlike an element ofH, whereHis a prescribed subgroup of the mapping class group of the block. The group$$\mathfrak B(H)$$ B ( H ) surjects onto an appropriate symmetric Thompson group of Farley–Hughes; in particular, it answers positively. Our main result asserts that$$\mathfrak B(H)$$ B ( H ) is of type$$F_n$$ F n if and only ifHis. As a consequence, for every$$g\in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } and every$$n\ge 1$$ n 1 , we construct a subgroup$$G <{{\,\textrm{Map}\,}}(\Sigma _g)$$ G < Map ( Σ g ) that is of type$$F_n$$ F n but not of type$$F_{n+1}$$ F n + 1 , and which contains the mapping class group of every compact surface of genus$$\le g$$ g and with non-empty boundary. 
    more » « less