Abstract Let$$f$$ be an analytic polynomial of degree at most$$K-1$$ . A classical inequality of Bernstein compares the supremum norm of$$f$$ over the unit circle to its supremum norm over the sampling set of the$$K$$ -th roots of unity. Many extensions of this inequality exist, often understood under the umbrella of Marcinkiewicz–Zygmund-type inequalities for$$L^{p},1\le p\leq \infty $$ norms. We study dimension-free extensions of these discretization inequalities in the high-dimension regime, where existing results construct sampling sets with cardinality growing with the total degree of the polynomial. In this work we show that dimension-free discretizations are possible with sampling sets whose cardinality is independent of$$\deg (f)$$ and is instead governed by the maximumindividualdegree of$$f$$ ;i.e., the largest degree of$$f$$ when viewed as a univariate polynomial in any coordinate. For example, we find that for$$n$$ -variate analytic polynomials$$f$$ of degree at most$$d$$ and individual degree at most$$K-1$$ ,$$\|f\|_{L^{\infty }(\mathbf{D}^{n})}\leq C(X)^{d}\|f\|_{L^{\infty }(X^{n})}$$ for any fixed$$X$$ in the unit disc$$\mathbf{D}$$ with$$|X|=K$$ . The dependence on$$d$$ in the constant is tight for such small sampling sets, which arise naturally for example when studying polynomials of bounded degree coming from functions on products of cyclic groups. As an application we obtain a proof of the cyclic group Bohnenblust–Hille inequality with an explicit constant$$\mathcal{O}(\log K)^{2d}$$ . 
                        more » 
                        « less   
                    
                            
                            Inverse Scattering Transform for Nonlinear Schrödinger Systems on a Nontrivial Background: A Survey of Classical Results, New Developments and Future Directions
                        
                    
    
            Abstract In this topical review paper we provide a survey of classical and more recent results on the IST for one-dimensional scalar, vector and square matrix NLS systems on the line ($$-\infty<\infty$$ ) with certain physically relevant non-zero boundary conditions at space infinity, discuss some new developments and applications, and offer some perspectives about future directions on the subject. 
        more » 
        « less   
        
    
                            - Award ID(s):
 - 2106488
 
- PAR ID:
 - 10421855
 
- Publisher / Repository:
 - Springer Science + Business Media
 
- Date Published:
 
- Journal Name:
 - Journal of Nonlinear Mathematical Physics
 
- Volume:
 - 30
 
- Issue:
 - 2
 
- ISSN:
 - 1776-0852
 
- Page Range / eLocation ID:
 - p. 317-383
 
- Format(s):
 - Medium: X
 
- Sponsoring Org:
 - National Science Foundation
 
More Like this
- 
            
 - 
            Abstract We consider the following stochastic heat equation$$\begin{aligned} \partial _t u(t,x) = \tfrac{1}{2} \partial ^2_x u(t,x) + b(u(t,x)) + \sigma (u(t,x)) {\dot{W}}(t,x), \end{aligned}$$ defined for$$(t,x)\in (0,\infty )\times {\mathbb {R}}$$ , where$${\dot{W}}$$ denotes space-time white noise. The function$$\sigma $$ is assumed to be positive, bounded, globally Lipschitz, and bounded uniformly away from the origin, and the functionbis assumed to be positive, locally Lipschitz and nondecreasing. We prove that the Osgood condition$$\begin{aligned} \int _1^\infty \frac{\textrm{d}y}{b(y)}<\infty \end{aligned}$$ implies that the solution almost surely blows up everywhere and instantaneously, In other words, the Osgood condition ensures that$$\textrm{P}\{ u(t,x)=\infty \quad \hbox { for all } t>0 \hbox { and } x\in {\mathbb {R}}\}=1.$$ The main ingredients of the proof involve a hitting-time bound for a class of differential inequalities (Remark 3.3), and the study of the spatial growth of stochastic convolutions using techniques from the Malliavin calculus and the Poincaré inequalities that were developed in Chen et al. (Electron J Probab 26:1–37, 2021, J Funct Anal 282(2):109290, 2022).more » « less
 - 
            Abstract We consider the Boltzmann equation in a convex domain with a non-isothermal boundary of diffuse reflection. For both unsteady/steady problems, we construct solutions belonging to$$W^{1,p}_x$$ for any$$p<3$$ . We prove that the unsteady solution converges to the steady solution in the same Sobolev space exponentially quickly as$$t \rightarrow \infty $$ .more » « less
 - 
            Abstract Given$$g \in \mathbb N \cup \{0, \infty \}$$ , let$$\Sigma _g$$ denote the closed surface of genusgwith a Cantor set removed, if$$g<\infty $$ ; or the blooming Cantor tree, when$$g= \infty $$ . We construct a family$$\mathfrak B(H)$$ of subgroups of$${{\,\textrm{Map}\,}}(\Sigma _g)$$ whose elements preserve ablock decompositionof$$\Sigma _g$$ , andeventually like actlike an element ofH, whereHis a prescribed subgroup of the mapping class group of the block. The group$$\mathfrak B(H)$$ surjects onto an appropriate symmetric Thompson group of Farley–Hughes; in particular, it answers positively. Our main result asserts that$$\mathfrak B(H)$$ is of type$$F_n$$ if and only ifHis. As a consequence, for every$$g\in \mathbb N \cup \{0, \infty \}$$ and every$$n\ge 1$$ , we construct a subgroup$$G <{{\,\textrm{Map}\,}}(\Sigma _g)$$ that is of type$$F_n$$ but not of type$$F_{n+1}$$ , and which contains the mapping class group of every compact surface of genus$$\le g$$ and with non-empty boundary.more » « less
 - 
            Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ that vanish to order at least$$\tau _jp$$ along$$\Sigma _j$$ ,$$1\le j\le \ell $$ . If$$Y\subset X$$ is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ of holomorphic sections of$$L^p|_Y$$ that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ . Assuming that the triplet$$(L,\Sigma ,\tau )$$ is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ as$$p\rightarrow \infty $$ .more » « less
 
An official website of the United States government 
				
			