Abstract The first synthesis and comprehensive characterization of two vinyl tetrazine‐linked covalent organic frameworks (COF), TA‐COF‐1 and TA‐COF‐2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2g−1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light‐driven applications. These advantages enable TA‐COFs to act as reusable metal‐free photocatalysts in the arylboronic acids oxidation and light‐induced coupling of benzylamines. In addition, these TA‐COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3vapor. Further, the TA‐COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA‐COFs can also degrade 5‐nitro‐1,2,4‐triazol‐3‐one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight‐driven photocatalytic process; thus, revealing dual functionality of the protonated TA‐COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF‐based materials, facilitating advances in catalysis, sensing, and other related fields.
more »
« less
Modulating Narrow Bandgap in a Diacetylene Functionalized Woven Covalent Organic Framework as a Visible Light Responsive Photocatalyst
Abstract Woven covalent organic frameworks (COF) possess entangled 3D frameworks. The metallated version of these structures contains spatially isolated Cu(I) centers and promising optoelectronic properties because of metal‐to‐ligand charge transfer (MLCT). However, despite their potential, woven COFs have not yet been investigated as photocatalysts. In this study, a new woven COF, Cu‐PhenBDA‐COF, functionalized with diacetylene bonds is developed. Cu‐PhenBDA‐COF is fully characterized, and the optoelectronic and photocatalytic properties are compared to previously reported Cu‐COF‐505. The diacetylene bonds of the linker positively impact the optoelectronic properties of Cu‐PhenBDA‐COF and result in a narrower bandgap and better charge separation efficiency. When the Cu(I) center is removed from both woven COFs, the absorption edge is blueshifted, resulting in a wider bandgap, and there is a considerable decrease in the charge separation efficiency, underscoring the pivotal role of MLCT. This trend is reflected in the photocatalytic activity of the woven COFs toward the degradation of sulfamethoxazole in water, where the highest reaction rate constant (kapp) is recorded for the metallated diacetylene functionalized woven COF, Cu‐PhenBDA‐COF.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10477429
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Covalent organic frameworks linked by carbon‐carbon double bonds (C=C COFs) are an emerging class of crystalline, porous, and conjugated polymeric materials with potential applications in organic electronics, photocatalysis, and energy storage. Despite the rapidly growing interest in sp2carbon‐conjugated COFs, only a small number of closely related condensation reactions have been successfully employed for their synthesis to date. Herein, we report the first example of a C=C COF, CORN‐COF‐1 (CORN=Cornell University), prepared byN‐heterocyclic carbene (NHC) dimerization. In‐depth characterization reveals that CORN‐COF‐1 possesses a two‐dimensional layered structure and hexagonal guest‐accessible pores decorated with a high density of strongly reducing tetraazafulvalene linkages. Exposure of CORN‐COF‐1 to tetracyanoethylene (TCNE,E1/2=0.13 V and −0.87 V vs. SCE) oxidizes the COF and encapsulates the radical anion TCNE⋅−and the dianion TCNE2−as guest molecules, as confirmed by spectroscopic and magnetic analysis. Notably, the reactive TCNE⋅−radical anion, which generally dimerizes in the solid state, is uniquely stabilized within the pores of CORN‐COF‐1. Overall, our findings broaden the toolbox of reactions available for the synthesis of redox‐active C=C COFs, paving the way for the design of novel materials.more » « less
-
Abstract Tuning the topology of two‐dimensional (2D) covalent organic frameworks (COFs) is of paramount scientific interest but remains largely unexplored. Herein, we present a site‐selective synthetic strategy that enables the tuning of 2D COF topology by simply adjusting the molar ratio of an amine‐functionalized dihydrazide monomer (NH2−Ah) and 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzaldehyde (Tz). This approach resulted in the formation of two distinct COFs: a clover‐like 2D COF with free amine groups (NH2−Ah−Tz) and a honeycomb‐like COF without amine groups (Ah−Tz). Both COFs exhibited good crystallinity and moderate porosity. Remarkably, the clover‐shaped NH2−Ah−Tz COF, with abundant free amine groups, displayed significantly enhanced adsorption capacities toward crystal violet (CV, 261 mg/g) and congo red (CR, 1560 mg/g) compared to the non‐functionalized honeycomb‐like Ah−Tz COF (123 mg/g for CV and 1340 mg/g for CR), underscoring the pivotal role of free amine functional groups in enhancing adsorption capacities for organic dyes. This work highlights that the site‐selective synthetic strategy paves a new avenue for manipulating 2D COF topology by adjusting the monomer feeding ratio, thereby modulating their adsorption performances toward organic dyes.more » « less
-
null (Ed.)Understanding the underlying physical mechanisms that govern charge transport in two-dimensional (2D) covalent organic frameworks (COFs) will facilitate the development of novel COF-based devices for optoelectronic and thermoelectric applications. In this context, the low-energy mid-infrared absorption contains valuable information about the structure–property relationships and the extent of intra- and inter-framework “hole” polaron delocalization in doped and undoped polymeric materials. In this study, we provide a quantitative characterization of the intricate interplay between electronic defects, domain sizes, pore volumes, chemical dopants, and three dimensional anisotropic charge migration in 2D COFs. We compare our simulations with recent experiments on doped COF films and establish the correlations between polaron coherence, conductivity, and transport signatures. By obtaining the first quantitative agreement with the measured absorption spectra of iodine doped (aza)triangulene-based COF, we highlight the fundamental differences between the underlying microstructure, spectral signatures, and transport physics of polymers and COFs. Our findings provide conclusive evidence of why iodine doped COFs exhibit lower conductivity compared to doped polythiophenes. Finally, we propose new research directions to address existing limitations and improve charge transport in COFs for applications in functional molecular electronic devices.more » « less
-
Abstract Two covalent organic frameworks consisting of carbazolylene‐ethynylene shape‐persistent macrocycles with azine (MC‐COF‐1) or imine (MC‐COF‐2) linkages were synthesized via imine condensation. The obtained 2D frameworks are fully conjugated which imparts semiconducting properties. In addition, the frameworks showed high porosity with aligned accessible porous channels along the z axis, serving as an ideal platform for post‐synthetic incorporation of I2into the channels to enable electrical conductivity. The resulting MC‐COF‐1 showed an electrical conductivity up to 7.8×10−4 S cm−1at room temperature upon I2doping with the activation energy as low as 0.09 eV. Furthermore, we demonstrated that the electrical properties of both MC‐COFs are switchable between electron‐conducting and insulating states by simply implementing doping‐regenerating cycles. The knowledge gained in this study opens new possibilities for the future development of tunable conductive 2D organic materials.more » « less