skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraining functional coactivation with a cluster-based structural connectivity network
Abstract In this article, we propose a two-step pipeline to explore task-dependent functional coactivations of brain clusters with constraints from the structural connectivity network. In the first step, the pipeline employs a nonparametric Bayesian clustering method that can estimate the optimal number of clusters, cluster assignments of brain regions of interest (ROIs), and the strength of within- and between-cluster connections without any prior knowledge. In the second step, a factor analysis model is applied to functional data with factors defined as the obtained structural clusters and the factor structure informed by the structural network. The coactivations of ROIs and their clusters can be studied by correlations between factors, which can largely differ by ongoing cognitive task. We provide a simulation study to validate that the pipeline can recover the underlying structural and functional network. We also apply the proposed pipeline to empirical data to explore the structural network of ROIs obtained by the Gordon parcellation and study their functional coactivations across eight cognitive tasks and a resting-state condition.  more » « less
Award ID(s):
1847603
PAR ID:
10421960
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Network Neuroscience
Volume:
6
Issue:
4
ISSN:
2472-1751
Page Range / eLocation ID:
1032 to 1065
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study how human brains activate to process input information and execute necessary cognitive tasks. Understanding the process is crucial in improving our diagnostic and treatment of different neurological disorders. Given functional MRI images recorded when human subjects execute tasks with different levels of information uncertainty, we need to identify the similarity and difference between brain activities at different regions of interest (ROIs), and thus gain insights into the underlying mechanism. To achieve this goal, we propose a new ROI- reweight 3D convolutional neural network (CNN). Our CNN not only learns to classify the task-evoked fMRIs with a high accuracy, but also locates crucial ROIs based on a reweight layer. Our findings reveal several brain regions to be crucial in differentiating brain activity patterns facing tasks of different uncertainty levels. 
    more » « less
  2. null (Ed.)
    Abstract Population analyses of functional connectivity have provided a rich understanding of how brain function differs across time, individual, and cognitive task. An important but challenging task in such population analyses is the identification of reliable features that describe the function of the brain, while accounting for individual heterogeneity. Our work is motivated by two particularly important challenges in this area: first, how can one analyze functional connectivity data over populations of individuals, and second, how can one use these analyses to infer group similarities and differences. Motivated by these challenges, we model population connectivity data as a multilayer network and develop the multi-node2vec algorithm, an efficient and scalable embedding method that automatically learns continuous node feature representations from multilayer networks. We use multi-node2vec to analyze resting state fMRI scans over a group of 74 healthy individuals and 60 patients with schizophrenia. We demonstrate how multilayer network embeddings can be used to visualize, cluster, and classify functional regions of the brain for these individuals. We furthermore compare the multilayer network embeddings of the two groups. We identify significant differences between the groups in the default mode network and salience network—findings that are supported by the triple network model theory of cognitive organization. Our findings reveal that multi-node2vec is a powerful and reliable method for analyzing multilayer networks. Data and publicly available code are available at https://github.com/jdwilson4/multi-node2vec . 
    more » « less
  3. BackgroundDynamic functional network connectivity (dFNC) estimated from resting-state functional magnetic imaging (rs-fMRI) studies the temporally varying functional integration between brain networks. In a conventional dFNC pipeline, a clustering stage to summarize the connectivity patterns that are transiently but reliably realized over the course of a scanning session. However, identifying the right number of clusters (or states) through a conventional clustering criterion computed by running the algorithm repeatedly over a large range of cluster numbers is time-consuming and requires substantial computational power even for typical dFNC datasets, and the computational demands become prohibitive as datasets become larger and scans longer. Here we developed a new dFNC pipeline based on a two-step clustering approach to analyze large dFNC data without having access to huge computational power. MethodsIn the proposed dFNC pipeline, we implement two-step clustering. In the first step, we randomly use a sub-sample dFNC data and identify several sets of states at different model orders. In the second step, we aggregate all dFNC states estimated from all iterations in the first step and use this to identify the optimum number of clusters using the elbow criteria. Additionally, we use this new reduced dataset and estimate a final set of states by performing a second kmeans clustering on the aggregated dFNC states from the first k-means clustering. To validate the reproducibility of results in the new pipeline, we analyzed four dFNC datasets from the human connectome project (HCP). ResultsWe found that both conventional and proposed dFNC pipelines generate similar brain dFNC states across all four sessions with more than 99% similarity. We found that the conventional dFNC pipeline evaluates the clustering order and finds the final dFNC state in 275 min, while this process takes only 11 min for the proposed dFNC pipeline. In other words, the new pipeline is 25 times faster than the traditional method in finding the optimum number of clusters and finding the final dFNC states. We also found that the new method results in better clustering quality than the conventional approach (p< 0.001). We show that the results are replicated across four different datasets from HCP. ConclusionWe developed a new analytic pipeline that facilitates the analysis of large dFNC datasets without having access to a huge computational power source. We validated the reproducibility of the result across multiple datasets. 
    more » « less
  4. ABSTRACT Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various brain domains. We present a novel approach based on static and dynamic inter‐network connectivity entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain networks. This novel approach enables the investigation of how connectivity strength is heterogeneously distributed across available targets in both SZ patients and healthy controls. We analyzed fMRI data from 151 SZ patients and 160 demographically matched healthy controls (HC). Our assessment encompassed both static and dynamic ICE, revealing significant differences in the heterogeneity of connectivity levels across available functional brain networks between SZ patients and HC. These networks are associated with subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN), and cerebellar (CB) functional brain domains. Elevated ICE observed in individuals with SZ suggests that patients exhibit significantly higher randomness in the distribution of time‐varying connectivity strength across functional regions from each source network, compared to HC. C‐means fuzzy clustering analysis of functional ICE correlation matrices revealed that SZ patients exhibit significantly higher occupancy weights in clusters with weak, low‐scale functional entropy correlation, while the control group shows greater occupancy weights in clusters with strong, large‐scale functional entropy correlation. K‐means clustering analysis on time‐indexed ICE vectors revealed that cluster with highest ICE have higher occupancy rates in SZ patients whereas clusters characterized by lowest ICE have larger occupancy rates for control group. Furthermore, our dynamic ICE approach revealed that in HC, the brain primarily communicates through complex, less structured connectivity patterns, with occasional transitions into more focused patterns. Individuals with SZ are significantly less likely to attain these more focused and structured transient connectivity patterns. The proposed ICE measure presents a novel framework for gaining deeper insight into mechanisms of healthy and diseased brain states and represents a useful step forward in developing advanced methods to help diagnose mental health conditions. 
    more » « less
  5. Neurological disorders generally involve multiple kinds of changes in the functional and structural properties of the brain. In this study, we develop a CNN-based multimodal deep learning pipeline by exploiting both functional and structural neuroimaging features to generate full-brain maps that encode significant differences between patient groups and between modalities in terms of their distinctive contribution towards diagnostic classification of Alzheimer’s disease. Through a repeated cross-validation procedure and robust statistical analysis, we show that our approach can be used to encode highly discriminative and abstract information from full-brain data, while also retaining the ability to identify and categorize significantly contributing voxel-level features based on their salient strength in various diagnostic and modality-related contexts. Our results on an Alzheimer’s disease classification task show that such approaches can be used for creating more elaborately defined biomarkers for brain disorders. 
    more » « less