skip to main content


This content will become publicly available on May 1, 2024

Title: Relation of Gravity, Winds, and the Moment of Inertia of Jupiter and Saturn
Abstract We study the relationship of zonal gravity coefficients, J 2 n , zonal winds, and axial moment of inertia (MoI) by constructing models for the interiors of giant planets. We employ the nonperturbative concentric Maclaurin spheroid method to construct both physical (realistic equation of state and barotropes) and abstract (small number of constant-density spheroids) interior models. We find that accurate gravity measurements of Jupiter’s and Saturn’s J 2 , J 4 , and J 6 by the Juno and Cassini spacecraft do not uniquely determine the MoI of either planet but do constrain it to better than 1%. Zonal winds (or differential rotation (DR)) then emerge as the leading source of uncertainty. For Saturn they are predicted to decrease the MoI by 0.4% because they reach a depth of ∼9000 km, while on Jupiter they appear to reach only ∼3000 km. We thus predict DR to affect Jupiter’s MoI by only 0.01%, too small by one order of magnitude to be detectable by the Juno spacecraft. We find that winds primarily affect the MoI indirectly via the gravity harmonic J 6 , while direct contributions are much smaller because the effects of pro- and retrograde winds cancel. DR contributes +6% and −0.8% to Saturn’s and Jupiter’s J 6 value, respectively. This changes the J 6 contribution that comes from the uniformly rotating bulk of the planet that correlates most strongly with the predicted MoI. With our physical models, we predict Jupiter’s MoI to be 0.26393 ± 0.00001. For Saturn, we predict 0.2181 ± 0.0002, assuming a rotation period of 10:33:34 hr that matches the observed polar radius.  more » « less
Award ID(s):
2020249
NSF-PAR ID:
10422103
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
4
Issue:
5
ISSN:
2632-3338
Page Range / eLocation ID:
95
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We construct models for Jupiter’s interior that match the gravity data obtained by the Juno and Galileo spacecraft. To generate ensembles of models, we introduce a novelquadraticMonte Carlo technique, which is more efficient in confining fitness landscapes than the affine invariant method that relies on linear stretch moves. We compare how long it takes the ensembles of walkers in both methods to travel to the most relevant parameter region. Once there, we compare the autocorrelation time and error bars of the two methods. For a ring potential and the 2d Rosenbrock function, we find that our quadratic Monte Carlo technique is significantly more efficient. Furthermore, we modified thewalkmoves by adding a scaling factor. We provide the source code and examples so that this method can be applied elsewhere. Here we employ our method to generate five-layer models for Jupiter’s interior that include winds and a prominent dilute core, which allows us to match the planet’s even and odd gravity harmonics. We compare predictions from the different model ensembles and analyze how much an increase in the temperature at 1 bar and ad hoc change to the equation of state affect the inferred amount of heavy elements in the atmosphere and in the planet overall.

     
    more » « less
  2. Abstract

    Jupiter’s atmosphere is one of the most turbulent places in the solar system. Whereas observations of lightning and thunderstorms point to moist convection as a small-scale energy source for Jupiter’s large-scale vortices and zonal jets, this has never been demonstrated due to the coarse resolution of pre-Juno measurements. The Juno spacecraft discovered that Jovian high latitudes host a cluster of large cyclones with diameter of around 5,000 km, each associated with intermediate- (roughly between 500 and 1,600 km) and smaller-scale vortices and filaments of around 100 km. Here, we analyse infrared images from Juno with a high resolution of 10 km. We unveil a dynamical regime associated with a significant energy source of convective origin that peaks at 100 km scales and in which energy gets subsequently transferred upscale to the large circumpolar and polar cyclones. Although this energy route has never been observed on another planet, it is surprisingly consistent with idealized studies of rapidly rotating Rayleigh–Bénard convection, lending theoretical support to our analyses. This energy route is expected to enhance the heat transfer from Jupiter’s hot interior to its troposphere and may also be relevant to the Earth’s atmosphere, helping us better understand the dynamics of our own planet.

     
    more » « less
  3. Abstract

    As part of our ongoing initiative to accurately calculate the accretion rate of planetesimals in the core-accretion model, we demonstrated in a recent article that when the calculations include the gravitational force of the Sun (the original core-accretion model did not include solar gravity), results change considerably (ApJ, 899:45). In this paper, we have advanced our previous study by including the effect of Saturn. To maintain focus on the effect of this planet, and in order to be consistent with previous studies, we did not include the effect of the nebular gas. Results demonstrate that, as expected, Saturn’s perturbation decreases the rate of accretion by scattering many planetesimals out of Jupiter’s accretion zone. It also increases the velocities with which planetesimals encounter the envelope, which in agreement with our previous findings enhances their breakup due to the ram pressure. Results also show that, because the effect of Saturn in scattering of planetesimals increases with its mass, this planet might not have played a significant role in the accretion of planetesimals by proto-Jupiter during the early stage of its growth. Finally, the late accretion of planetesimals, as obtained in our previous study, appears in our new results as well, implying that, combined with the rapid infall of the gas, it can result in the mixing of material in the outer regions of the envelope, which may explain the enhancement of the envelope’s high-Zmaterial.

     
    more » « less
  4. Abstract

    Understanding Jupiter's present‐day interior structure and dynamics is key to constraining planetary accretion models. In particular, the extent of stable stratification (i.e., non‐convective regions) in the planet strongly influences long‐term cooling processes, and may record primordial heavy element gradients from early in a planet's formation. Because the Galileo entry probe measured a subsolar helium abundance, Jupiter interior models often invoke an outer stably stratified region due to helium rain. Additionally, Juno gravity data suggest a deeper, potentially stratified dilute core extending halfway through the planet. However, fits to Jupiter's gravitational data are non‐unique, and outstanding uncertainty over the equations of state for hydrogen and helium remain. Here, we use high‐resolution numerical magnetohydrodynamic simulations of Jupiter's magnetic field to place constraints on the extent of stable stratification within the planet. We find that compared to traditional interior models, an upper stably stratified layer between 0.9 and 0.95 Jupiter radii (RJ) helps to explain both Jupiter's dipolar magnetic field and zonal winds. In contrast, an extended dilute core that is entirely stably stratified (no convective layers) yields significantly worse fits to both. However, our models with extended deep stratification still generate dipolar magnetic fields if an upper stratified region is also present. Overall, we find that a planet with a dilute core i.e., strongly stably stratified is increasingly challenging to reconcile with Jupiter's magnetic field and winds. Thus if a dilute core is present, alternative modalities such as a fully convective dilute core, a complex multilayered interior structure, or double diffusive convection may be required.

     
    more » « less
  5. Abstract Interior modeling of Jupiter and Saturn has advanced to a state where thousands of models are generated that cover the uncertainty space of many parameters. This approach demands a fast method of computing their gravity field and shape. Moreover, the Cassini mission at Saturn and the ongoing Juno mission delivered gravitational harmonics up to J 12 . Here we report the expansion of the theory of figures, which is a fast method for gravity field and shape computation, to the seventh order (ToF7), which allows for computation of up to J 14 . We apply three different codes to compare the accuracy using polytropic models. We apply ToF7 to Jupiter and Saturn interior models in conjunction with CMS-19 H/He equation of state. For Jupiter, we find that J 6 is best matched by a transition from an He-depleted to He-enriched envelope at 2–2.5 Mbar. However, the atmospheric metallicity reaches 1 × solar only if the adiabat is perturbed toward lower densities, or if the surface temperature is enhanced by ∼14 K from the Galileo value. Our Saturn models imply a largely homogeneous-in-Z envelope at 1.5–4 × solar atop a small core. Perturbing the adiabat yields metallicity profiles with extended, heavy-element-enriched deep interior (diffuse core) out to 0.4 R Sat , as for Jupiter. Classical models with compact, dilute, or no core are possible as long as the deep interior is enriched in heavy elements. Including a thermal wind fitted to the observed wind speeds, representative Jupiter and Saturn models are consistent with all observed J n values. 
    more » « less