skip to main content


Title: Exploring the personal/external domains: Investigating changes in epistemic orientations during sustained collaborative professional learning
Current reform efforts in science education focus on creating environments where students grapple with and negotiate their own understandings and mechanistic explanations of scientific phenomena by using their knowledge of disciplinary content and science practices. In order to support this reformed vision, effective professional development (PD) for science teachers is critical. If PD is to shape teachers’ practice, teachers must experience a change in attitudes and beliefs. The research presented here explores the epistemic orientation of three secondary science teacher cohorts who were supported in different iterations in a larger professional development study. The epistemic orientation toward teaching science survey was administered at three time points for each cohort and paired sample t-tests were performed to analyze composite and dimensional scores. Our analysis revealed that change in epistemic orientation occurred for teachers who engaged in two years of supportive PD, but that one year of support was not sufficient to engender change in epistemic orientations. These findings further support the need for continuous, high-quality, longitudinal PD when the goal is a shift in science teachers’ epistemological beliefs and teaching practices.  more » « less
Award ID(s):
1720587
NSF-PAR ID:
10422108
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
National Association for Research in Science Teaching Annual Meeting 2023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Current reform efforts in science education focus on creating environments where students grapple with and negotiate their own understandings and mechanistic explanations of scientific phenomena by using their knowledge of disciplinary content and science practices. In order to support this reformed vision, effective professional development (PD;) for science teachers is critical. If PD is to shape teachers’ practice, teachers must experience a change in attitudes and beliefs. The research presented here explores the epistemic orientation of two secondary science teacher cohorts who were supported in a longitudinal professional development study. The epistemic orientation toward teaching science survey was administered at three time points for each cohort and paired sample t-tests were performed to analyze composite and dimensional scores. Our analysis revealed that change in epistemic orientation occurred for teachers who engaged in two years of supportive PD, but that one year of support was not sufficient to engender change in epistemic orientations. These findings further support the need for continuous, high-quality, longitudinal PD when the goal is a shift in science teachers’ epistemological beliefs and teaching practices. 
    more » « less
  2. As part of a larger effort to understand the impact of professional development (PD) on teachers’ thinking and practices, this research explores changes in epistemic orientation (and associated practices) of two cohorts of secondary science teachers as they were involved in a longitudinal PD. To measure epistemic orientation, Epistemic Orientation toward Teaching Science surveys were administered at three-time points and teachers’ classrooms were observed. Findings suggest that change in epistemic orientation occurred for teachers who engaged in two years of PD, but that one year was not sufficient to engender such changes in epistemic orientation or instructional practice. These findings speak to the need for continuous, highquality, longitudinal PD. 
    more » « less
  3. As the importance to integrate engineering into K12 curricula grows so does the need to develop teachers’ engineering teaching capabilities and knowledge. One method that has been used to aid this development is engineering professional development programs. This evaluation paper presents the successes and challenges of an engineering professional development program for teachers focused around the use of engineering problem-framing design activities in high school science classrooms. These activities were designed to incorporate the cross-cutting ideas published in the Next Generation Science Standards (NGSS) and draw on best practices for instructional design of problem-framing activities from research on design and model-eliciting activities (MEAs). The professional development (PD) was designed to include the following researched-based effective PD key elements: (1) is content focused, (2) incorporates active learning, (3) supports collaboration, (4) uses models of effective practice, (5) provides coaching and expert support, (6) offers feedback and reflection, and (7) is of sustained duration. The engineering PD, including in-classroom deployment of activities and data collection, was designed as an iterative process to be conducted over a three-year period. This will allow for improvement and refinement of our approach. The first iteration, reported in this paper, consisted of seven high school science teachers who have agreed to participate in the PD, implement the problem-framing activities, and collect student data over a period of one year. The PD itself consisted of the teachers comparing science and engineering, participating in problem-framing training and activities, and developing a design challenge scenario for their own courses. The participating teachers completed a survey at the end of the PD that will be used to inform enhancement of the PD and our efforts to recruit additional participants in the following year. The qualitative survey consisted of open-ended questions asking for the most valuable takeaways from the PD, their reasoning for joining the PD, reasons they would or would not recommend the PD, and, in their opinion, what would inspire their colleagues to attend the PD. The responses to the survey along with observations from the team presenting the PD were analyzed to identify lessons learned and future steps for the following iteration of the PD. From the data, three themes emerged: Development of PD, Teacher Motivation, and Teacher Experience. 
    more » « less
  4. As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which means that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education. 
    more » « less
  5. Abstract  
    more » « less