Abstract Double-strand breaks (DSBs) in DNA are challenging to repair. Cells employ at least three DSB-repair mechanisms, with a preference for non-homologous end joining (NHEJ) over homologous recombination (HR) and microhomology-mediated end joining (MMEJ). While most eukaryotic DNA is transcribed into RNA, providing complementary genetic information, much remains unknown about the direct impact of RNA on DSB-repair outcomes and its role in DSB-repair via end joining. Here, we show that both sense and antisense-transcript RNAs impact DSB repair in a sequence-specific manner in wild-type human and yeast cells. Depending on its sequence complementarity with the broken DNA ends, a transcript RNA can promote repair of a DSB or a double-strand gap in its DNA gene via NHEJ or MMEJ, independently from DNA synthesis. The results demonstrate a role of transcript RNA in directing the way DSBs are repaired in DNA, suggesting that RNA may directly modulate genome stability and evolution.
more »
« less
In vivo fluorescent TUNEL detection of single stranded DNA gaps and breaks induced by dnaB helicase mutants in Escherichia coli
The genome of prokaryotes can be damaged by a variety of endogenous and exogenous factors, including reactive oxygen species, UV exposure, and antibiotics. To better understand these repair processes and the impact they may have on DNA replication, normal genome maintenance processes can be perturbed by removing or editing associated genes and monitoring DNA repair outcomes. In particular, the replisome activities of DNA unwinding by the helicase and DNA synthesis by the polymerase must be tightly coupled to prevent any appreciable single strand DNA (ssDNA) from accumulating and amplifying genomic stress. If decoupled, vulnerable ssDNA would persist, likely leading to double strand breaks (DSBs) or requiring replication restart mechanisms downstream of a stall. In either case, free 3'-OH strands would exist, resulting from ssDNA gaps in the leading strand or complete DSBs. Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) can enzymatically label ssDNA ends with bromo-deoxy uridine triphosphate (BrdU) to detect free 3'-OH DNA ends in the E. coli genome. Labeled DNA ends can be detected and quantified using fluorescence microscopy or flow cytometry. This methodology is useful in applications where in situ investigation of DNA damage and repair are of interest, including effects from enzyme mutations or deletions and exposure to various environmental conditions.
more »
« less
- Award ID(s):
- 2105167
- PAR ID:
- 10422230
- Editor(s):
- Trakselis, Michael A.
- Date Published:
- Journal Name:
- Methods in enzymology
- Volume:
- 672
- ISSN:
- 1557-7988
- Page Range / eLocation ID:
- 125-142
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
CRISPR/Cas technology is increasingly being used as a common methodology in many cancer biology studies due to the ease and convenience of the technique. Precise editing of genomic DNA has been achieved upon repair of CRISPR-induced DNA double-strand breaks (DSBs) by homologous recombination (HR). HR repairs DNA DSBs with high fidelity and therefore, deficiencies in HR result in genome instability. These deficiencies have been demonstrated in many cancers. RAD51-dependent HR is a very important pathway for repairing DSBs. Previous studies have shown that genome editing using CRISPR technology relies on the repair of site-specific DNA DSBs induced by the RNA-guided Cas9 endonuclease. Furthermore, previous studies have shown that the efficiency of CRISPR-mediated HR can be improved by the stimulation of HR promoting factors, such as the RAD51 recombinase. Despite the ease and efficient use the CRISPR/Cas technology for genome editing, one limitation is the potential occurrence of associated off-target effects. If CRISPR technology is planned to be used to target cancer cells with defective HR capabilities, will off-target mutations be likely to occur? In order to answer this question, a system was developed in Saccharomyces cerevisiae using green fluorescent protein (GFP) as a reporter to identify off-target CRISPR-induced DSBs. This study set out to test the number of off-target DSBs that could be introduced by CRISPR-induced genome editing in a RAD51-deficient HR model. We were curious whether loss of RAD51-dependent HR would increase the abundance of off-target CRISPR-induced DSBs in mutant yeast strains as compared to those with a functioning HR-dependent DNA repair pathway. Preliminary findings using this system will be presented.more » « less
-
Abstract The Msh2–Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2–Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2–Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2–Msh3 binding to 5′ ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2–Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2–Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2–Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2–Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2–Msh3 can disrupt DNA replication and repair and highlights the role of Msh2–Msh3 protein abundance in Msh2–Msh3-mediated genomic instability.more » « less
-
Expanded CAG/CTG repeats are sites of DNA damage, leading to changes in repeat length. To determine how ssDNA gap filling affects repeat instability, we inserted (CAG)70 or (CTG)70 repeats into a single-strand annealing (SSA) assay system such that resection and filling in the ssDNA gap would occur across the repeat tract. After resection, when the CTG sequence was the single-stranded template for fill-in synthesis, repeat contractions were elevated and the ssDNA created a fragile site that led to large deletions involving flanking homologous sequences. In contrast, resection was inhibited when CTG was on the resected strand, resulting in repeat expansions. Deleting Rad9, the ortholog of 53BP1, rescued repeat instability and lost viability by increasing resection and fill-in speed. Deletion of Rad51 increased CTG contractions and decreased survival, implicating Rad51 in protecting ssDNA during gap filling. Taken together, DNA sequence within a single-stranded gap determines repair kinetics, fragility, and repeat instability.more » « less
-
Greenwood-Van Meerveld, Beverley (Ed.)Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since WWI. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the HR pathway could pose a novel approach to mitigate SM injury. Here we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances gH2AX focus formation and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DDR through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared to vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs.more » « less
An official website of the United States government

