DNA double-strand breaks (DSBs) occur frequently in eukaryotic cells, and the homologous recombination pathway (HR) is one of the major pathways required to repair these breaks. However, tumor cells that are able to repair DSBs are unlikely to die due to damage incurred by DNA damaging chemotherapies, such as platinum compounds. While platinum-based therapies have been effective in treating various cancers, they also carry harsh side effects, and thus ideally platinum should be used when the probability of treatment resistance is low. HR scores provide a measure for patients’ tumor’s HR capacity and have been shown to predict their chemotherapy response and long-term survival. Calculating this score manually from immunofluorescence microscopy images for each patient is error-prone and time-consuming. Herein, we propose an image processing pipeline that takes as input imaging data from three emission channels (representing nuclei, S-phase cells, and HR-mediated repair in a tumor slice) from an epifluorescence microscope and computes the HR score. Our open-source methodology forms a rationale to develop similar approaches in predicting chemotherapeutic responses and facilitating to make treatment decisions.
more »
« less
Treatment of Sulfur Mustard Corneal Injury by Augmenting the DNA Damage Response (DDR): A Novel Approach
Sulfur mustard (SM) is a highly reactive organic chemical has been used as a chemical warfare agent and terrorist threat since WWI. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. Exposure to higher doses can elicit persistent secondary keratopathies that cause reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. SM cytotoxicity emerges, in part, through DNA alkylation and double-strand breaks (DSBs). Because DSBs can naturally be repaired by DNA damage response pathways with low efficiency, we hypothesized that enhancing the HR pathway could pose a novel approach to mitigate SM injury. Here we demonstrate that a dilithium salt of adenosine diphosphoribose (INV-102) increases protein levels of p53 and Sirtuin 6, upregulates transcription of BRCA1/2, enhances gH2AX focus formation and promotes assembly of repair complexes at DSBs. Based on in vitro evidence showing INV-102 enhancement of DDR through both p53-dependent and p53-independent pathways, we next tested INV-102 in a rabbit preclinical model of corneal injury. In vivo studies demonstrate a marked reduction in the incidence and severity of secondary keratopathies in INV-102-treated eyes compared to vehicle-treated eyes when treatment was started 24 hours after SM vapor exposure. These results suggest DNA repair mechanisms are a viable therapeutic target for SM injury and suggest topical treatment with INV-102 is a promising approach for SM as well as other conditions associated with DSBs.
more »
« less
- Award ID(s):
- 2143016
- PAR ID:
- 10484995
- Editor(s):
- Greenwood-Van Meerveld, Beverley
- Publisher / Repository:
- Pubmed
- Date Published:
- Journal Name:
- The Journal of pharmacology and experimental therapeutics
- Volume:
- 388
- Issue:
- 1
- ISSN:
- 0022-3565
- Subject(s) / Keyword(s):
- chemical toxicology DNA damage DNA damage and repair Drug development
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Trakselis, Michael A. (Ed.)The genome of prokaryotes can be damaged by a variety of endogenous and exogenous factors, including reactive oxygen species, UV exposure, and antibiotics. To better understand these repair processes and the impact they may have on DNA replication, normal genome maintenance processes can be perturbed by removing or editing associated genes and monitoring DNA repair outcomes. In particular, the replisome activities of DNA unwinding by the helicase and DNA synthesis by the polymerase must be tightly coupled to prevent any appreciable single strand DNA (ssDNA) from accumulating and amplifying genomic stress. If decoupled, vulnerable ssDNA would persist, likely leading to double strand breaks (DSBs) or requiring replication restart mechanisms downstream of a stall. In either case, free 3'-OH strands would exist, resulting from ssDNA gaps in the leading strand or complete DSBs. Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) can enzymatically label ssDNA ends with bromo-deoxy uridine triphosphate (BrdU) to detect free 3'-OH DNA ends in the E. coli genome. Labeled DNA ends can be detected and quantified using fluorescence microscopy or flow cytometry. This methodology is useful in applications where in situ investigation of DNA damage and repair are of interest, including effects from enzyme mutations or deletions and exposure to various environmental conditions.more » « less
-
Pericentromeric heterochromatin is highly enriched for repetitive sequences prone to aberrant recombination. Previous studies showed that homologous recombination (HR) repair is uniquely regulated in this domain to enable ‘safe’ repair while preventing aberrant recombination. In Drosophila cells, DNA double-strand breaks (DSBs) relocalize to the nuclear periphery through nuclear actin-driven directed motions before recruiting the strand invasion protein Rad51 and completing HR repair. End-joining (EJ) repair also occurs with high frequency in heterochromatin of fly tissues, but how alternative EJ (alt-EJ) pathways operate in heterochromatin remains largely uncharacterized. Here, we induce DSBs in single euchromatic and heterochromatic sites using a new system that combines the DR-white reporter and I-SceI expression in spermatogonia of flies. Using this approach, we detect higher frequency of HR repair in heterochromatin, relative to euchromatin. Further, sequencing of mutagenic repair junctions reveals the preferential use of different EJ pathways across distinct euchromatic and heterochromatic sites. Interestingly, synthesis-dependent microhomology-mediated end joining (SD-MMEJ) appears differentially regulated in the two domains, with a preferential use of motifs close to the cut site in heterochromatin relative to euchromatin, resulting in smaller deletions. Together, these studies establish a new approach to study repair outcomes in fly tissues, and support the conclusion that heterochromatin uses more HR and less mutagenic EJ repair relative to euchromatin.more » « less
-
The acute radiation syndrome is defined in large part by radiation injury in the hematopoietic and gastrointestinal (GI) systems. To identify new pathways involved in radiation-induced GI injury, this study assessed dose- and time-dependent changes in plasma metabolites in a nonhuman primate model of whole abdominal irradiation. Male and female adult Rhesus monkeys were exposed to 6 MV photons to the abdomen at doses ranging between 8 and 14 Gy. At time points from 1 to 60 days after irradiation, plasma samples were collected and subjected to untargeted metabolomics. With the limited sample size of females, different discovery times after irradiation between males and females were observed in metabolomics pattern. Detailed analyses are restricted to only males for the discovery power. Radiation caused an increase in fatty acid oxidation and circulating levels of corticosteroids which may be an indication of physiological stress, and amino acids, indicative of a cellular repair response. The largest changes were observed at days 9 and 10 post-irradiation, with most returning to baseline at day 30. In addition, dysregulated metabolites involved in amino acid pathways, which might indicate changes in the microbiome, were detected. In conclusion, abdominal irradiation in a nonhuman primate model caused a plasma metabolome profile indicative of GI injury. These results point to pathways that may be targeted for intervention or used as early indicators of GI radiation injury. Moreover, our results suggest that effects are sex-specific and that interventions may need to be tailored accordingly.more » « less
-
Abstract Double-strand breaks (DSBs) in DNA are challenging to repair. Cells employ at least three DSB-repair mechanisms, with a preference for non-homologous end joining (NHEJ) over homologous recombination (HR) and microhomology-mediated end joining (MMEJ). While most eukaryotic DNA is transcribed into RNA, providing complementary genetic information, much remains unknown about the direct impact of RNA on DSB-repair outcomes and its role in DSB-repair via end joining. Here, we show that both sense and antisense-transcript RNAs impact DSB repair in a sequence-specific manner in wild-type human and yeast cells. Depending on its sequence complementarity with the broken DNA ends, a transcript RNA can promote repair of a DSB or a double-strand gap in its DNA gene via NHEJ or MMEJ, independently from DNA synthesis. The results demonstrate a role of transcript RNA in directing the way DSBs are repaired in DNA, suggesting that RNA may directly modulate genome stability and evolution.more » « less
An official website of the United States government

