skip to main content


Title: Predicting Natural Gas Pipeline Failures Caused by Natural Forces: An Artificial Intelligence Classification Approach
Pipeline networks are a crucial component of energy infrastructure, and natural force damage is an inevitable and unpredictable cause of pipeline failures. Such incidents can result in catastrophic losses, including harm to operators, communities, and the environment. Understanding the causes and impact of these failures is critical to preventing future incidents. This study investigates artificial intelligence (AI) algorithms to predict natural gas pipeline failures caused by natural forces, using climate change data that are incorporated into pipeline incident data. The AI algorithms were applied to the publicly available Pipeline and Hazardous Material Safety Administration (PHMSA) dataset from 2010 to 2022 for predicting future patterns. After data pre-processing and feature selection, the proposed model achieved a high prediction accuracy of 92.3% for natural gas pipeline damage caused by natural forces. The AI models can help identify high-risk pipelines and prioritize inspection and maintenance activities, leading to cost savings and improved safety. The predictive capabilities of the models can be leveraged by transportation agencies responsible for pipeline management to prevent pipeline damage, reduce environmental damage, and effectively allocate resources. This study highlights the potential of machine learning techniques in predicting pipeline damage caused by natural forces and underscores the need for further research to enhance our understanding of the complex interactions between climate change and pipeline infrastructure monitoring and maintenance.  more » « less
Award ID(s):
2119691
NSF-PAR ID:
10422258
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
13
Issue:
7
ISSN:
2076-3417
Page Range / eLocation ID:
4322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Process safety is becoming a greater focus of chemical plant design and operation due to the number of incidents involving dangerous chemical accidents. Since its creation nearly 20 years ago, the Chemical Safety Board (CSB) has investigated 130 safety incidents and provided over 800 safety recommendations to operating chemical facilities. Following a gas well blowout in 2018, the CSB gave a recommendation to the American Petroleum Institute (API) to establish recommended practice on alarm management. Similarly, in 2017, the CSB gave a recommendation to Arkema Inc. to update their emergency response training following a hurricane that caused a fire at one of their manufacturing sites. Many times, CSB-led investigations resulted in new regulations and standards that are enforced by the Occupational Safety and Health Administration (OSHA) or the Environmental Protection Agency (EPA). These critical recommendations positively impact not only the plant workers but also the surrounding community and the environment. While these safety measures enhance industrial safety culture, it is important that process safety also be integrated into university-level engineering curricula to promote safety culture while future engineers are still developing. Integrating process safety into the curriculum prepares students by familiarizing them with the difficult decisions they will be required to make in professional practice. ABET, the engineering program accreditation body, acknowledges the value of early, appropriate training within their program guidelines “Criteria for Chemical Engineering Curriculum” which states that recognition and assessment of the hazards associated with chemical processes must be included in the curriculum for program accreditation. Based on this requirement, many institutions have taken the approach to integrate process safety into their curriculum using video case studies, adding entire courses to cover hazard identification, and including safety lectures in design courses. A common theme missing from these methods is instruction on how to approach, recognize, and navigate decisions within a process safety context; a lack of this situational awareness was noted as a key element in industrial process safety incidents. Understanding how students approach process safety decisions is important for developing teaching methods and curriculum that will better prepare them for professional practice. As part of this study, we will measure how students rank criteria associated with process safety decisions, and how these prioritizations change after exposure to a process safety decision making intervention. Through this work, we hope to determine how process safety curriculum may be improved to help better prepare students for process safety decisions within industry. 
    more » « less
  2. Although electricity transmission systems are typically very robust, the impacts that arise when they are disrupted motivate methods for analyzing outage risk. For example, N-k interdiction models were developed to characterize disruptions by identifying the sets of k power system components whose failure results in “worst case” outages. While such models have advanced considerably, they generally neglect how failures outside the power system can cause large-scale outages. Specifically, failures in natural gas pipeline networks that provide fuel for gas-fired generators can affect the function of the power grid. In this study, we extend N-k interdiction modeling to gas pipeline networks. We use recently developed convex relaxations for natural gas flow equations to yield tractable formulations for identifying sets of k components whose failure can cause curtailment of natural gas delivery. We then present a novel cutting-plane algorithm to solve these problems. Finally, we use test instances to analyze the performance of the approach in conjunction with simulations of outage effects on electrical power grids. 
    more » « less
  3. Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways towards mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future. 
    more » « less
  4. ABSTRACT

    Heat stress imposes an important physiological constraint on native plant species—one that will only worsen with human-caused climate change. Indeed, rising temperatures have already contributed to large-scale plant mortality events across the globe. These impacts may be especially severe in cities, where the urban heat island effect amplifies climate warming. Understanding how plant species will respond physiologically to rising temperatures and how these responses differ among plant functional groups is critical for predicting future biodiversity scenarios and making informed land management decisions. In this study, we evaluated the effects of elevated temperatures on a functionally and taxonomically diverse group of woody native plant species in a restored urban nature preserve in southern California using measurements of chlorophyll fluorescence as an indicator of leaf thermotolerance. Our aim was to determine if species’ traits and drought strategies could serve as useful predictors of thermotolerance. We found that leaf thermotolerance differed among species with contrasting drought strategies, and several leaf-level functional traits were significant predictors of thermotolerance thresholds. Drought deciduous species with high specific leaf area, high rates of transpiration and low water use efficiency were the most susceptible to heat damage, while evergreen species with sclerophyllous leaves, high relative water content and high water use efficiency maintained photosynthetic function at higher temperatures. While these native shrubs and trees are physiologically equipped to withstand relatively high temperatures in this Mediterranean-type climate, hotter conditions imposed by climate change and urbanization may exceed the tolerance thresholds of many species. We show that leaf functional traits and plant drought strategies may serve as useful indicators of species’ vulnerabilities to climate change, and this information can be used to guide restoration and conservation in a warmer world.

     
    more » « less
  5. Abstract

    A long‐standing question in biology is how organisms change through time and space in response to their environment. This knowledge is of particular relevance to predicting how organisms might respond to future environmental changes caused by human‐induced global change. Usually researchers make inferences about past events based on an understanding of current static genetic patterns, but these are limited in their capacity to inform on underlying past processes. Natural history collections (NHCs) represent a unique and critical source of information to provide temporally deep and spatially broad time‐series of samples. By using NHC samples, researchers can directly observe genetic changes over time and space and link those changes with specific ecological/evolutionary events. Until recently, such genetic studies were hindered by the intrinsic challenges of NHC samples (i.e. low yield of highly fragmented DNA). However, recent methodological and technological developments have revolutionized the possibilities in the novel field of NHC genomics. In this Special Feature, we compile a range of studies spanning from methodological aspects to particular case studies which demonstrate the enormous potential of NHC samples for accessing large genomic data sets from the past to advance our knowledge on how populations and species respond to global change at multiple spatial–temporal scales. We also highlight possible limitations, recommendations and a few opportunities for future researchers aiming to study NHC genomics.

     
    more » « less