skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DIY hyperspectral imaging via polarization-induced spectral filters
We propose a novel design for a do-it-yourself hyperspectral imaging system which operates by taking multiple photographs through tunable, polarization-induced, spectral filters. Prior approaches in this do-it-yourself arena achieve hyperspectral imaging by selecting from a discrete set of spectra baked into existing products. In contrast, our approach is capable of generating a continuous family of broadband transmission spectra by simple rotations of stacked polarizers and waveplates. This greatly expands the potential range of representable spectra from a fixed-dimensional to an arbitrary-dimensional space. We analyze the theoretical spectral gamut of our approach and demonstrate its viability for spectral surface reflectance reconstruction both in simulation and with a low-cost physical prototype. Our prototype demonstrates that our approach can achieve comparable quality to prior work at reduced cost, while the new design space holds ample opportunity for increased quality and flexibility with professional manufacturing.  more » « less
Award ID(s):
1844538
PAR ID:
10422294
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Computational Photography (ICCP)
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest. 
    more » « less
  2. Abstract Visible hyperspectral imaging (HSI) is a fast and non-invasive imaging method that has been adapted by the field of conservation science to study painted surfaces. By collecting reflectance spectra from a 2D surface, the resulting 3D hyperspectral data cube contains millions of recorded spectra. While processing such large amounts of spectra poses an analytical and computational challenge, it also opens new opportunities to apply powerful methods of multivariate analysis for data evaluation. With the intent of expanding current data treatment of hyperspectral datasets, an innovative approach for data reduction and visualization is presented in this article. It uses a statistical embedding method known as t-distributed stochastic neighbor embedding (t-SNE) to provide a non-linear representation of spectral features in a lower 2D space. The efficiency of the proposed method for painted surfaces from cultural heritage is established through the study of laboratory prepared paint mock-ups, and medieval French illuminated manuscript. 
    more » « less
  3. Minoglou, Kyriaki; Karafolas, Nikos; Cugny, Bruno (Ed.)
    This paper describes Flare Sentinel, a compact integral field spectrograph (IFS) for the study of the hydrogen Balmer series spectrum from 350 to 450 nm of solar flare from space. Flare Sentinel IFS is based on a new Machined Image Slicer Compact Spectrograph Array (MICS) design. MICS consists of an image slicer that divides a continuous 2D spatial field formed by an imaging system into multiple narrow slices, and an array of miniature spectrographs, each forming the spectra of one of the slices of the 2D field. The spectra formed by all the miniature spectrographs can be projected on a common 2D focal plane to be recorded by an image sensors. The spectra can also be distributed to multiple focal planes and recorded simultaneously by multiple sensors to increase the instantaneous hyperspectral field of view of the instrument. New image slicers with slit width of 36 um and 20 um have been successfully fabricated using Canon Inc.’s ultra-precision diamond-cutting CNC mill. This capability is enabling design and fabrication of IFSs with imaging format of 102 × 102 , and spectral resolution between 100 < R < 10, 000 in a very compact package. We will present the optical design and the optical hardware of a prototype IFS that has been fabricated. 
    more » « less
  4. Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions (~65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss (~99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time. 
    more » « less
  5. Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While its original applications were in remote sensing, modern uses include agriculture, historical document authentications and medicine. HSI has shown great utility in fluorescence microscopy; however, acquisition speeds have been slow due to light losses associated with spectral filtering. We are currently developing a rapid hyperspectral imaging platform for 5-dimensional imaging (RHIP-5D), a confocal imaging system that will allow users to obtain simultaneous measurements of many fluorescent labels. We have previously reported on optical modeling performance of the system. This previous model investigated geometrical capability of designing a multifaceted mirror imaging system as an initial approach to sample light at many wavelengths. The design utilized light-emitting diodes (LEDs) and a multifaceted mirror array to combine light sources into a liquid light guide (LLG). The computational model was constructed using Monte Carlo optical ray software (TracePro, Lambda Research Corp.). Recent results presented here show transmission has increased up to 9% through parametric optimization of each component. Future work will involve system validation using a prototype engineered based on our optimized model. System requirements will be evaluated to determine if potential design changes are needed to improve the system. We will report on spectral resolution to demonstrate feasibility of the RHIP-5D as a promising solution for overcoming current HSI acquisition speed and sensitivity limitations. 
    more » « less