skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Bright, Dark, and Gray Sides of Risk Takers at Work: Criterion Validity of Risk Propensity for Contextual Work Performance
Award ID(s):
2142891
PAR ID:
10422369
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Business and Psychology
ISSN:
0889-3268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. U.S. elections rely heavily on computers such as voter registration databases, electronic pollbooks, voting machines, scanners, tabulators, and results reporting websites. These introduce digital threats to election outcomes. Risk-limiting audits (RLAs) mitigate threats to some of these systems by manually inspecting random samples of ballot cards. RLAs have a large chance of correcting wrong outcomes (by conducting a full manual tabulation of a trustworthy record of the votes), but can save labor when reported outcomes are correct. This efficiency is eroded when sampling cannot be targeted to ballot cards that contain the contest(s) under audit. If the sample is drawn from all cast cards, then RLA sample sizes scale like the reciprocal of the fraction of ballot cards that contain the contest(s) under audit. That fraction shrinks as the number of cards per ballot grows (i.e., when elections contain more contests) and as the fraction of ballots that contain the contest decreases (i.e., when a smaller percentage of voters are eligible to vote in the contest). States that conduct RLAs of contests on multi-card ballots or RLAs of small contests can dramatically reduce sample sizes by using information about which ballot cards contain which contests—by keeping track of card-style data (CSD). For instance, CSD reduce the expected number of draws needed to audit a single countywide contest on a 4-card ballot by 75%. Similarly, CSD reduce the expected number of draws by 95% or more for an audit of two contests with the same margin on a 4-card ballot if one contest is on every ballot and the other is on 10% of ballots. In realistic examples, the savings can be several orders of magnitude. 
    more » « less
  2. null (Ed.)
    There remains a lack of research on professional engineering work practices [1]. This deficiency is troubling because engineering education is organized and reorganized based on claims and assumptions about what professional engineering work is or will be. Without well-researched and trustworthy representations of practice, it is questionable whether engineering educators can adequately prepare future engineers for workplace realities. Although it is important that the preparation of future engineers not be tied solely to the workforce, there is a significant “disconnect between engineers in practice and engineers in academe” [2, p. 18]. If educators want to prepare students for professional success – including by assuming roles as future leaders and change agents – concrete images of engineering work are critical resources for rethinking engineering education [1]. The need for such resources is even more urgent given ongoing changes to engineering work under the forces of globalization, new organizational configurations, and new technologies of communication, design, and production. More research is needed to document images that are often discounted by students and even faculty, i.e., portrayals of engineering practice that emphasize its non-technical and non-calculative sides, as well as its non-individual aspects [3-4]. The aim of this work-in-progress paper is to introduce an exploratory project that will test innovative approaches to data collection and analysis for rapidly generating new knowledge about engineering practice. Traditionally, engineering practices have primarily been studied using in-depth ethnographic field research, requiring researchers to embed themselves as participant observers in the workplace. Yet technical work increasingly involves open workspaces and geographically distributed teams, frequent changes in job roles and team composition, and many layers of digital abstraction and collaboration. It thus may not be feasible or optimal to perform on-site research for extended periods of time. The main aim of this paper is to introduce method innovations for conducting field research which can potentially generate higher quality data more efficiently. Before doing so, we briefly overview prior research on engineering practice. 
    more » « less
  3. There remains a lack of research on professional engineering work practices [1]. This deficiency is troubling because engineering education is organized and reorganized based on claims and assumptions about what professional engineering work is or will be. Without well-researched and trustworthy representations of practice, it is questionable whether engineering educators can adequately prepare future engineers for workplace realities. Although it is important that the preparation of future engineers not be tied solely to the workforce, there is a significant “disconnect between engineers in practice and engineers in academe” [2, p. 18]. If educators want to prepare students for professional success – including by assuming roles as future leaders and change agents – concrete images of engineering work are critical resources for rethinking engineering education [1]. The need for such resources is even more urgent given ongoing changes to engineering work under the forces of globalization, new organizational configurations, and new technologies of communication, design, and production. More research is needed to document images that are often discounted by students and even faculty, i.e., portrayals of engineering practice that emphasize its non-technical and non-calculative sides, as well as its non-individual aspects [3-4]. The aim of this work-in-progress paper is to introduce an exploratory project that will test innovative approaches to data collection and analysis for rapidly generating new knowledge about engineering practice. Traditionally, engineering practices have primarily been studied using in-depth ethnographic field research, requiring researchers to embed themselves as participant observers in the workplace. Yet technical work increasingly involves open workspaces and geographically distributed teams, frequent changes in job roles and team composition, and many layers of digital abstraction and collaboration. It thus may not be feasible or optimal to perform on-site research for extended periods of time. The main aim of this paper is to introduce method innovations for conducting field research which can potentially generate higher quality data more efficiently. Before doing so, we briefly overview prior research on engineering practice. 
    more » « less