skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topological modularity of supermoonshine
Abstract The theory of topological modular forms (TMF) predicts that elliptic genera of physical theories satisfy a certain divisibility property, determined by the theory’s gravitational anomaly. In this note we verify this prediction in Duncan’s supermoonshine module, as well as in tensor products and orbifolds thereof. Along the way we develop machinery for computing the elliptic genera of general alternating orbifolds and discuss the relation of this construction to the elusive “periodicity class” of TMF.  more » « less
Award ID(s):
2210533
PAR ID:
10422379
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Progress of Theoretical and Experimental Physics
Volume:
2023
Issue:
3
ISSN:
2050-3911
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract This paper describes a generalization of decomposition in orbifolds. In general terms, decomposition states that two-dimensional orbifolds and gauge theories whose gauge groups have trivially-acting subgroups decompose into disjoint unions of theories. However, decomposition can be, at least naively, broken in orbifolds if the orbifold has discrete torsion in the trivially-acting subgroup. (Formally, this breaks finite global one-form symmetries.) Nevertheless, even in such cases, one still sees rudiments of decomposition. In this paper, we generalize decomposition in orbifolds to include such examples of discrete torsion, which we check in numerous examples. Our analysis includes as special cases (and in one sense generalizes) quantum symmetries of abelian orbifolds. 
    more » « less
  2. A bstract In this paper we generalize previous work on decomposition in three-dimensional orbifolds by 2-groups realized as analogues of central extensions, to orbifolds by more general 2-groups. We describe the computation of such orbifolds in physics, state a version of the decomposition conjecture, and then compute in numerous examples, checking that decomposition works as advertised. 
    more » « less
  3. Abstract The “hierarchy of factors” hypothesis states that decomposition rates are controlled primarily by climatic, followed by biological and soil variables. Tropical montane forests (TMF) are globally important ecosystems, yet there have been limited efforts to provide a biome‐scale characterization of litter decomposition. We designed a common litter decomposition experiment replicated in 23 tropical montane sites across the Americas, Asia, and Africa and combined these results with a previous study of 23 sites in tropical lowland forests (TLF). Specifically, we investigated (1) spatial heterogeneity in decomposition, (2) the relative importance of biological factors that affect leaf and wood decomposition in TMF, and (3) the role of climate in determining leaf litter decomposition rates within and across the TMF and TLF biomes. Litterbags of two mesh sizes containingLaurus nobilisleaves or birchwood popsicle sticks were spatially dispersed and incubated in TMF sites, for 3 and 7 months on the soil surface and at 10–15 cm depth. The within‐site replication demonstrated spatial variability in mass loss. Within TMF, litter type was the predominant biological factor influencing decomposition (leaves > wood), with mesh and burial effects playing a minor role. When comparing across TMF and TLF, climate was the predominant control over decomposition, but the Yasso07 global model (based on mean annual temperature and precipitation) only modestly predicted decomposition rate. Differences in controlling factors between biomes suggest that TMF, with their high rates of carbon storage, must be explicitly considered when developing theory and models to elucidate carbon cycling rates in the tropics. Abstract in Spanish is available with online material. 
    more » « less
  4. A bstract In this paper, we introduce a new set of modular-invariant phase factors for orbifolds with trivially-acting subgroups, analogous to discrete torsion and generalizing quantum symmetries. After describing their basic properties, we generalize decomposition to include orbifolds with these new phase factors, making a precise proposal for how such orbifolds are equivalent to disjoint unions of other orbifolds without trivially-acting subgroups or one-form symmetries, which we check in numerous examples. 
    more » « less
  5. A bstract In this paper we study three-dimensional orbifolds by 2-groups with a trivially-acting one-form symmetry group BK . These orbifolds have a global two-form symmetry, and so one expects that they decompose into (are equivalent to) a disjoint union of other three-dimensional theories, which we demonstrate. These theories can be interpreted as sigma models on 2-gerbes, whose formal structures reflect properties of the orbifold construction. 
    more » « less