skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum symmetries in orbifolds and decomposition
A bstract In this paper, we introduce a new set of modular-invariant phase factors for orbifolds with trivially-acting subgroups, analogous to discrete torsion and generalizing quantum symmetries. After describing their basic properties, we generalize decomposition to include orbifolds with these new phase factors, making a precise proposal for how such orbifolds are equivalent to disjoint unions of other orbifolds without trivially-acting subgroups or one-form symmetries, which we check in numerous examples.  more » « less
Award ID(s):
2014086 1820867
PAR ID:
10329910
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract This paper describes a generalization of decomposition in orbifolds. In general terms, decomposition states that two-dimensional orbifolds and gauge theories whose gauge groups have trivially-acting subgroups decompose into disjoint unions of theories. However, decomposition can be, at least naively, broken in orbifolds if the orbifold has discrete torsion in the trivially-acting subgroup. (Formally, this breaks finite global one-form symmetries.) Nevertheless, even in such cases, one still sees rudiments of decomposition. In this paper, we generalize decomposition in orbifolds to include such examples of discrete torsion, which we check in numerous examples. Our analysis includes as special cases (and in one sense generalizes) quantum symmetries of abelian orbifolds. 
    more » « less
  2. A bstract In this paper we study three-dimensional orbifolds by 2-groups with a trivially-acting one-form symmetry group BK . These orbifolds have a global two-form symmetry, and so one expects that they decompose into (are equivalent to) a disjoint union of other three-dimensional theories, which we demonstrate. These theories can be interpreted as sigma models on 2-gerbes, whose formal structures reflect properties of the orbifold construction. 
    more » « less
  3. A<sc>bstract</sc> In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions, extending our previous work. Specifically, in this work we discuss more general gauged noninvertible symmetries in which the noninvertible symmetry is not multiplicity free, and discuss the case of Rep(A4) in detail. We realize Rep(A4) gaugings for thec= 1 CFT at the exceptional point in the moduli space and find new self-duality under gauging a certain non-group algebra object, leading to a larger noninvertible symmetry Rep(SL(2, ℤ3)). We also discuss more general examples of decomposition in two-dimensional gauge theories with trivially-acting gauged noninvertible symmetries. 
    more » « less
  4. In this paper, we apply decomposition to orbifolds with quantum symmetries to resolve anomalies. Briefly, it has been argued by, e.g. Wang–Wen–Witten, Tachikawa that an anomalous orbifold can sometimes be resolved by enlarging the orbifold group so that the pullback of the anomaly to the larger orbifold group is trivial. For this procedure to resolve the anomaly, one must specify a set of phases in the larger orbifold, whose form is implicit in the extension construction. There are multiple choices of consistent phases, which give rise to physically distinct resolutions. We apply decomposition, and find that theories with enlarged orbifold groups are equivalent to (disjoint unions of copies of) orbifolds by nonanomalous subgroups of the original orbifold group. In effect, decomposition implies that enlarging the orbifold group is equivalent to making it smaller. We provide a general conjecture for such descriptions, which we check in a number of examples. 
    more » « less
  5. This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep ⁡ ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep ⁡ ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep ⁡ ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep ⁡ ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} . We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . Our methods here are general, and the techniques developed will generalise to give skein theory for any orbifold of a braided tensor category. We also give a formulation of orthogonal level-rank duality in the type D D - D D case, which is used to construct one of the exceptionals. We uncover an unexpected connection between quadratic categories and exceptional braided auto-equivalences of the orbifolds. We use this connection to construct two of the four exceptionals. In the sequel to this paper we will use the classified braided auto-equivalences to construct the corresponding type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . This will essentially finish the type I I II classification for s l n \mathfrak {sl}_n modulo type I I classification. When paired with Gannon’s type I I classification for r ≤ 6 r\leq 6 , our results will complete the type I I II classification for these same ranks. This paper includes an appendix by Terry Gannon, which provides useful results on the dimensions of objects in the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . 
    more » « less