skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Science Teachers’ Negotiation of Professional Vision around Dilemmas of Science Teaching in a Professional Development Context
Learning to teach is a culturally situated activity. As teachers learn, it is important to understand not only what teachers learn, but how they learn. This article describes a qualitative case study of a subset of four teachers’ learning during a professional development surrounding a plate tectonics curriculum. Using qualitative methods, this study tells the story of how the four teachers negotiated professional vision for science teaching around dilemmas that emerged throughout the professional development. By taking a sociocultural perspective on professional vision, researchers can gain insight into how and what teachers learn in professional develop- ment settings because it renders teacher learning complex and nuanced. Additionally, we argue negotiating professional vision parallels sensemak- ing. Sensemaking around science teaching includes grappling with epis- temic issues of science in addition to pedagogy and curriculum. Implications for science teacher education are discussed. Specifically, we argue learning to teach requires teachers to engage in conversations that create opportunities to “get somewhere” in relation to dilemmas they have about teaching. In this way, professional vision is an ongoing process of learning that has no endpoint or ideal articulation of teaching or science. Therefore, by framing professional vision as a process of learning we are able to push back on simplistic descriptions of teaching and science.  more » « less
Award ID(s):
2006144
PAR ID:
10422570
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Science Teacher Education
ISSN:
1046-560X
Page Range / eLocation ID:
1 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the increased attention on integrating computer science concepts into K-12 curricula, there has been a growing investment into professional development opportunities that prepare teachers to teach computer science principles. Yet, little research exists on design features of professional development that help teachers gain the computer science content, skills and teaching pedagogy that ultimately make an impact on student learning and participation in the classroom. In this work we present a professional development model for helping K-12 teachers integrate computer science principles across the curriculum in a variety of content areas. We subsequently investigate the ways in which the design features of the model promoted teacher learning of computer science content and pedagogy. 
    more » « less
  2. The "Computer Science for All" initiative advocates for universal access to computer science (CS) instruction. A key strategy toward this end has been to establish CS content standards outlining what all students should have the opportunity to learn. Standards can support curriculum quality and access to quality CS instruction, but only if they are used to inform curriculum design and instructional practice. Professional learning offered to teachers of CS has typically focused on learning to implement a specific curriculum, rather than deepening understanding of CS concepts. We set out to develop a set of educative resources, formative assessment tools and teacher professional development (PD) sessions to support middle school CS teachers' knowledge of CS standards and standards-aligned formative assessment literacy. Our PD and associated resources focus on five CS standards in the Algorithm and Programming strand and are meant to support teachers using any CS curriculum or programming language. In this experience report, we share what we learned from implementing our standards-based PD with four middle school CS teachers. Teachers initially perceived standards as irrelevant to their teaching but they came to appreciate how a deeper understanding of CS concepts could enhance their instructional practice. Analysis of PD observations and exit surveys, teacher interviews, and teacher responses to a survey assessing CS pedagogical content knowledge demonstrated the complexity of using content standards as a driver of high-quality CS instruction at the middle school level, and reinforced our position that more standards-focused PD is needed. 
    more » « less
  3. Teacher self-efficacy (SE) has been observed to be an 'important construct for Computer Science (CS) teachers' professional development because it can predict both teaching behaviors as well as student outcomes" [1]. The purpose of the present study was to investigate teacher CS SE during a two-year federally funded professional development (PD) and curriculum development project for middle school teachers incorporating game-design and the Unity development platform. The research question investigated is: How does teacher self-efficacy for teaching computer science via game design with the Unity game development platform change during a year-long PD program? Investigations of teacher SE for teaching CS have resulted in some surprising results. For example, it has been reported that - There were no differences in self-efficacy based on teachers' overall level of experience, despite previous findings that teacher self-efficacy is related to amount of experience" and "no differences in self-efficacy related to the teachers' own level of experience with CS" [2], thus further study of CS teacher SE is warranted. Participants in this study were six middle school teachers from four middle schools in the southeastern United States. They participated in a year-long PD program learning the Unity game development platform, elements of game design, and foundations of learner motivation. Guided reflective journaling was used to track the teachers' SE during the first year of the project. Teachers completed journal prompts at four intervals. Prompts consisted of questions like "How do you currently feel about your ability to facilitate student learning with Unity?" and "Are you confident that you can implement the materials the way the project team has planned for them to be implemented?" Prior to beginning the project participants expressed confidence in being able to facilitate student learning after participating in the planned professional development, but there was some uneasiness about learning and using Unity. From a SE perspective their responses make sense, as all of the participants are experienced teachers and should have confidence in their general ability to teach. However, since Unity is a new programming environment for all of the teachers, they did not have the prior experience necessary to have a high degree of confidence that they could successfully use it with their students. 
    more » « less
  4. In an era of high-stakes accountability and widespread calls for improved student performance in science, technology, engineering, and math (National Research Council, 2002), it is critical that we also focus on how to support and enhance teachers’ learning. Teachers have long been understood to play a key role in the performance of students (e.g., Nye, Konstantopoulos, & Hedges, 2004). Educational policymakers have become increasingly focused on “value-added” approaches to gauging teacher performance (McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004), which attempt to directly link the contribution of individual teachers to their students’ subsequent test performance, in both the near and far term. We take the position that, no matter what one thinks about the current testing and evaluation regime, it makes sense to conduct research to improve our understanding of how to support teachers’ ongoing learning and efforts to improve their practice related to student outcomes. This paper reports on a study of teacher learning in a context that is especially apt in the current policy climate – how teachers learn to teach a curriculum associated with a recently-revised high stakes examination. In particular, we report early results from a study of high school teachers learning to teach the revised Advanced Placement Biology curriculum as they prepare students for a high-stakes examination. We examine the role of professional development in supporting teachers’ learning to use the revised Advanced Placement Biology curriculum and the relationship between teachers’ professional development choices and subsequent student performance on the Advanced Placement Biology examination. 
    more » « less
  5. The recent groundswell of interest in computer science education across many countries has created a pressing need for computing teachers at the secondary level. To satisfy this demand, some educational systems are drawing from their pool of in-service teachers trained in other disciplines. While these transitioning teachers can learn about computing pedagogy and subject matter at professional learning workshops, daily teaching experiences will also be a source of their learning. We studied a co-teaching program where instructional responsibilities were distributed between teachers and volunteers from the tech industry to explore how specific teaching practices supported teacher learning, with a focus on pedagogical content knowledge (PCK). Through qualitative analysis of questionnaire and interview data gathered from three teachers during one school year, we identified the practices they engaged in and how their learning related to the enactment of those practices. Our results highlight several factors that influenced the ways in which teaching practices provided participants with opportunities to learn PCK: (a) active participation of students and volunteers; (b) teacher’s level of content knowledge; (c) interdependent practices; and (d) immediacy of the classroom environment. 
    more » « less