skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Highly Basic Clusters in the Herpes Simplex Virus 1 Nuclear Egress Complex Drive Membrane Budding by Inducing Lipid Ordering
ABSTRACT During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding in vitro , providing a biophysical explanation for the in vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. IMPORTANCE Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world’s population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.  more » « less
Award ID(s):
1808459
PAR ID:
10422614
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Shenk, Thomas
Date Published:
Journal Name:
mBio
Volume:
12
Issue:
4
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Longnecker, Richard M. (Ed.)
    ABSTRACT Nuclear envelope budding in herpesvirus nuclear egress may be negatively regulated, since the pUL31/pUL34 nuclear egress complex heterodimer can induce membrane budding without capsids when expressed ectopically or on artificial membranes in vitro , but not in the infected cell. We have previously described a pUL34 mutant that contained alanine substitutions at R158 and R161 and that showed impaired growth, impaired pUL31/pUL34 interaction, and unregulated budding. Here, we determine the phenotypic contributions of the individual substitutions to these phenotypes. Neither substitution alone was able to reproduce the impaired growth or nuclear egress complex (NEC) interaction phenotypes. Either substitution, however, could fully reproduce the unregulated budding phenotype, suggesting that misregulated budding may not substantially impair virus replication. In addition, the R158A substitution caused relocalization of the NEC to intranuclear punctate structures and recruited lamin A/C to these structures, suggesting that this residue might be important for recruitment of kinases for dispersal of nuclear lamins. IMPORTANCE Herpesvirus nuclear egress is a complex, regulated process coordinated by two virus proteins that are conserved among the herpesviruses that form a heterodimeric nuclear egress complex (NEC). The NEC drives budding of capsids at the inner nuclear membrane and recruits other viral and host cell proteins for disruption of the nuclear lamina, membrane scission, and fusion. The structural basis of individual activities of the NEC, apart from membrane budding, are not clear, nor is the basis of the regulation of membrane budding. Here, we explore the properties of NEC mutants that have an unregulated budding phenotype, determine the significance of that regulation for virus replication, and also characterize a structural requirement for nuclear lamina disruption. 
    more » « less
  2. ABSTRACT In eukaryotic cells, the s oluble N -ethylmaleimide- s ensitive f actor (NSF) a ttachment protein re ceptor (SNARE) proteins comprise the minimal machinery that triggers fusion of transport vesicles with their target membranes. Comparative studies revealed that genes encoding the components of the SNARE system are highly conserved in yeast, insect, and human genomes. Upon infection of insect cells by the virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the transcript levels of most SNARE genes initially were upregulated. We found that overexpression of dominant-negative (DN) forms of NSF or knockdown of the expression of NSF, the key regulator of the SNARE system, significantly affected infectious AcMNPV production. In cells expressing DN NSF, entering virions were trapped in the cytoplasm or transported to the nucleus with low efficiency. The presence of DN NSF also moderately reduced trafficking of the viral envelope glycoprotein GP64 to the plasma membrane but dramatically inhibited production of infectious budded virions (BV). Transmission electron microscopy analysis of infections in cells expressing DN NSF revealed that progeny nucleocapsids were retained in a perinuclear space surrounded by inner and outer nuclear membranes. Several baculovirus conserved (core) proteins (Ac76, Ac78, GP41, Ac93, and Ac103) that are important for infectious budded virion production were found to associate with NSF, and NSF was detected within the assembled BV. Together, these data indicate that the cellular SNARE system is involved in AcMNPV infection and that NSF is required for efficient entry and nuclear egress of budded virions of AcMNPV. IMPORTANCE Little is known regarding the complex interplay between cellular factors and baculoviruses during viral entry and egress. Here, we examined the cellular SNARE system, which mediates the fusion of vesicles in healthy cells, and its relation to baculovirus infection. Using a DN approach and RNA interference knockdown, we demonstrated that a general disruption of the SNARE machinery significantly inhibited the production of infectious BV of AcMNPV. The presence of a DN NSF protein resulted in low-efficiency entry of BV and the retention of progeny nucleocapsids in the perinuclear space during egress. Combined with these effects, we also found that several conserved (core) baculovirus proteins closely associate with NSF, and these results suggest their involvement in the egress of BV. Our findings are the first to demonstrate that the SNARE system is required for efficient entry of BV and nuclear egress of progeny nucleocapsids of baculoviruses. 
    more » « less
  3. Nuclear import of the hepatitis B virus (HBV) nucleocapsid is essential for replication that occurs in the nucleus. The ~360-angstrom HBV capsid translocates to the nuclear pore complex (NPC) as an intact particle, hijacking human importins in a reaction stimulated by host kinases. This paper describes the mechanisms of HBV capsid recognition by importins. We found that importin α1 binds a nuclear localization signal (NLS) at the far end of the HBV coat protein Cp183 carboxyl-terminal domain (CTD). This NLS is exposed to the capsid surface through a pore at the icosahedral quasi-sixfold vertex. Phosphorylation at serine-155, serine-162, and serine-170 promotes CTD compaction but does not affect the affinity for importin α1. The binding of 30 importin α1/β1 augments HBV capsid diameter to ~620 angstroms, close to the maximum size trafficable through the NPC. We propose that phosphorylation favors CTD externalization and prompts its compaction at the capsid surface, exposing the NLS to importins. 
    more » « less
  4. ABSTRACT The endosomal sorting complex required for transport (ESCRT) machinery is necessary for budding of many enveloped viruses. Recently, it was demonstrated that Vps4, the key regulator for recycling of the ESCRT-III complex, is required for efficient infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, ESCRT assembly, regulation, and function are complex, and little is known regarding the details of participation of specific ESCRT complexes in AcMNPV infection. In this study, the core components of ESCRT-I (Tsg101 and Vps28) and ESCRT-III (Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60) were cloned from Spodoptera frugiperda . Using a viral complementation system and RNA interference (RNAi) assays, we found that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. In cells knocking down or overexpressing dominant negative (DN) forms of the components of ESCRT-I and ESCRT-III complexes, entering virions were partially trapped within the cytosol. To examine only egress, cells were transfected with the double-stranded RNA (dsRNA) targeting an individual ESCRT-I or ESCRT-III gene and viral bacmid DNA or viral bacmid DNA that expressed DN forms of ESCRT-I and ESCRT-III components. We found that ESCRT-III components (but not ESCRT-I components) are required for efficient nuclear egress of progeny nucleocapsids. In addition, we found that several baculovirus core or conserved proteins (Ac11, Ac76, Ac78, GP41, Ac93, Ac103, Ac142, and Ac146) interact with Vps4 and components of ESCRT-III. We propose that these viral proteins may form an “egress complex” that is involved in recruiting ESCRT-III components to a virus egress domain on the nuclear membrane. IMPORTANCE The ESCRT system is hijacked by many enveloped viruses to mediate budding and release. Recently, it was found that Vps4, the key regulator of the cellular ESCRT machinery, is necessary for efficient entry and egress of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, little is known about the roles of specific ESCRT complexes in AcMNPV infection. In this study, we demonstrated that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. The components of ESCRT-III (but not ESCRT-I) are also necessary for efficient nuclear egress of progeny nucleocapsids. Several baculovirus core or conserved proteins were found to interact with Vps4 and components of ESCRT-III, and these interactions may suggest the formation of an “egress complex” involved in the nuclear release or transport of viral nucleocapsids. 
    more » « less
  5. ABSTRACT The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are transported through the cell. These include (i) entry of budded virus (BV) into the host cell and (ii) egress and budding of nucleocapsids newly produced from the plasma membrane. Prior studies have shown that the entry of nucleocapsids involves the polymerization of actin to propel nucleocapsids to nuclear pores and entry into the nucleus. For the spread of infection, progeny viruses must rapidly exit the infected cells, but the mechanism by which AcMNPV nucleocapsids traverse the cytoplasm is unknown. In this study, we examined whether nucleocapsids interact with lepidopteran kinesin-1 motor molecules and are potentially carried as cargo on microtubules to the plasma membrane in AcMNPV-infected cells. This study indicates that microtubule transport is utilized for the production of budded virus. 
    more » « less