skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large global variations in the carbon dioxide removal potential of seaweed farming due to biophysical constraints
Abstract Estimates suggest that over 4 gigatons per year of carbon dioxide (Gt-CO2year−1) be removed from the atmosphere by 2050 to meet international climate goals. One strategy for carbon dioxide removal is seaweed farming; however its global potential remains highly uncertain. Here, we apply a dynamic seaweed growth model that includes growth-limiting mechanisms, such as nitrate supply, to estimate the global potential yield of four types of seaweed. We estimate that harvesting 1 Gt year−1of seaweed carbon would require farming over 1 million km2of the most productive exclusive economic zones, located in the equatorial Pacific; the cultivation area would need to be tripled to attain an additional 1 Gt year−1of harvested carbon, indicating dramatic reductions in carbon harvest efficiency beyond the most productive waters. Improving the accuracy of annual harvest yield estimates requires better understanding of biophysical constraints such as seaweed loss rates (e.g., infestation, disease, grazing, wave erosion).  more » « less
Award ID(s):
2022927
PAR ID:
10422679
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Different CO2exchange pathways were monitored for a year in short- and tall-formSpartina alternifloragrasses in a southeastern USA salt marsh at North Inlet, South Carolina. The tall form of grass growing close to a creek under favorable conditions reached a higher standing biomass than the short form of grass growing in the interior marsh. However, the photosynthetic parameters of both forms of grass were equivalent. The tall canopy had greater net canopy production, 973 versus 571 g C m−2year−1, canopy growth, 700 versus 131 g C m−2year−1, and canopy respiration, 792 versus 225 g C m−2year−1, but lower sediment respiration, 251 versus 392 g C m−2year−1. In a single growing season, tall-canopy biomass increased to intercept all the available solar radiation, which limits gross photosynthesis. Total respiration increased during the growing season in proportion to live biomass to a level that limited net production. Theoretically, the difference between net canopy production and canopy growth is carbon allocated to belowground growth and respiration. However, the computation of belowground production by this method was unrealistically low. This is important because carbon sequestration is proportional to belowground production and accounts for most of the vertical elevation gain of the marsh surface. Based on the allometry of standing live biomass, alternative estimates of belowground production were 927 and 193 g C m−2year−1in creekbank and interior marshes, which would yield gains in surface elevation of 0.2 and 0.04 cm/year, respectively. 
    more » « less
  2. Abstract Several methods have been developed to quantify the oceanic accumulation of anthropogenic carbon dioxide (CO2) in response to rising atmospheric CO2. Yet, we still lack a corresponding estimate of the changes in the total oceanic dissolved inorganic carbon (DIC). In addition to the increase in anthropogenic CO2, changes in DIC also include alterations of natural CO2. Once integrated globally, changes in DIC reflect the net oceanic sink for atmospheric CO2, complementary to estimates of the air‐sea CO2exchange based on surface measurements. Here, we extend the MOBO‐DIC machine learning approach by Keppler et al. (2020a,https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc%3A0221526) to estimate global monthly fields of DIC at 1° resolution over the top 1,500 m from 2004 through 2019. We find that over these 16 years and extrapolated to cover the whole global ocean down to 4,000 m, the oceanic DIC pool increased close to linearly at an average rate of 3.2 ± 0.7 Pg C yr−1. This trend is statistically indistinguishable from current estimates of the oceanic uptake of anthropogenic CO2over the same period. Thus, our study implies no detectable net loss or gain of natural CO2by the ocean, albeit the large uncertainties could be masking it. Our reconstructions suggest substantial internal redistributions of natural oceanic CO2, with a shift from the midlatitudes to the tropics and from the surface to below ∼200 m. Such redistributions correspond with the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. The interannual variability of DIC is strongest in the tropical Western Pacific, consistent with the El Nio Southern Oscillation. 
    more » « less
  3. Abstract The transfer of photosynthetically produced organic carbon from surface to mesopelagic waters draws carbon dioxide from the atmosphere1. However, current observation-based estimates disagree on the strength of this biological carbon pump (BCP)2. Earth system models (ESMs) also exhibit a large spread of BCP estimates, indicating limited representations of the known carbon export pathways3. Here we use several decades of hydrographic observations to produce a top-down estimate of the strength of the BCP with an inverse biogeochemical model that implicitly accounts for all known export pathways. Our estimate of total organic carbon (TOC) export at 73.4 m (model euphotic zone depth) is 15.00 ± 1.12 Pg C year−1, with only two-thirds reaching 100 m depth owing to rapid remineralization of organic matter in the upper water column. Partitioned by sequestration time below the euphotic zone,τ, the globally integrated organic carbon production rate withτ > 3 months is 11.09 ± 1.02 Pg C year−1, dropping to 8.25 ± 0.30 Pg C year−1forτ > 1 year, with 81% contributed by the non-advective-diffusive vertical flux owing to sinking particles and vertically migrating zooplankton. Nevertheless, export of organic carbon by mixing and other fluid transport of dissolved matter and suspended particles remains regionally important for meeting the respiratory carbon demand. Furthermore, the temperature dependence of the sequestration efficiency inferred from our inversion suggests that future global warming may intensify the recycling of organic matter in the upper ocean, potentially weakening the BCP. 
    more » « less
  4. Abstract Methane (CH4) is a potent greenhouse gas with a warming potential 84 times that of carbon dioxide (CO2) over a 20‐year period. Atmospheric CH4concentrations have been rising since the nineteenth century but the cause of large increases post‐2007 is disputed. Tropical wetlands are thought to account for ∼20% of global CH4emissions, but African tropical wetlands are understudied and their contribution is uncertain. In this work, we use the first airborne measurements of CH4sampled over three wetland areas in Zambia to derive emission fluxes. Three independent approaches to flux quantification from airborne measurements were used: Airborne mass balance, airborne eddy‐covariance, and an atmospheric inversion. Measured emissions (ranging from 5 to 28 mg m−2 hr−1) were found to be an order of magnitude greater than those simulated by land surface models (ranging from 0.6 to 3.9 mg m−2hr−1), suggesting much greater emissions from tropical wetlands than currently accounted for. The prevalence of such underestimated CH4sources may necessitate additional reductions in anthropogenic greenhouse gas emissions to keep global warming below a threshold of 2°C above preindustrial levels. 
    more » « less
  5. Abstract Mangroves are considered one of the most productive ecosystems in the world with significant contributions as carbon sinks in the biosphere. Yet few attempts have been made to assess global patterns in mangrove net primary productivity, except for a few assumptions relating litterfall rates to variation in latitude. We combined geophysical and climatic variables to predict mangrove litterfall rates at continental scale. On a per‐area basis, carbon flux in litterfall in the neotropics is estimated at 5 MgC·ha−1·yr−1, between 20% and 50% higher than previous estimates. Annual carbon fixed in mangrove litterfall in the neotropics is estimated at 11.5 TgC, which suggests that current global litterfall estimates extrapolated from mean reference values may have been underestimated by at least 5%. About 5.8 TgC of this total carbon fixed in the neotropics is exported to estuaries and coastal oceans, which is nearly 30% of global carbon export by tides. We provide the first attempt to quantify and map the spatial variability of carbon fixed in litterfall in mangrove forests at continental scale in response to geophysical and climatic environmental drivers. Our results strengthen the global carbon budget for coastal wetlands, providing blue carbon scientists and coastal policy makers with a more accurate representation of the potential of mangroves to offset carbon dioxide emissions. 
    more » « less