Proximal noncovalent forces are commonplace in natural systems and understanding the consequences of their juxtaposition is critical. This paper experimentally quantifies for the first time a Hydrogen Bond‐Enhanced Halogen Bond (HBeXB) without the complexities of protein structure or preorganization. An HBeXB is a halogen bond that has been strengthened when the halogen donor simultaneously accepts a hydrogen bond. Our theoretical studies suggest that electron‐rich halogen bond donors are strengthened most by an adjacent hydrogen bond. Furthermore, stronger hydrogen bond donors enhance the halogen bond the most. X‐ray crystal structures of halide complexes (X−=Br−, I−) reveal that HBeXBs produce shorter halogen bonds than non‐hydrogen bond analogues.19F NMR titrations with chloride highlight that the HBeXB analogue exhibits stronger binding. Together, these results form the foundation for future studies concerning hydrogen bonds and halogen bonds in close proximity.
The lone pair of the N atom is a common electron donor in noncovalent bonds. Quantum calculations examine how various aspects of the base on which the N is located affect the strength and other properties of complexes formed with Lewis acids FH, FBr, F2Se, and F3As that respectively encompass hydrogen, halogen, chalcogen, and pnicogen bonds. In most cases the halogen bond is the strongest, followed in order by chalcogen, hydrogen, and pnicogen. The noncovalent bond strength increases in the sp
- Award ID(s):
- 1954310
- PAR ID:
- 10422834
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhysChem
- Volume:
- 24
- Issue:
- 15
- ISSN:
- 1439-4235
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Proximal noncovalent forces are commonplace in natural systems and understanding the consequences of their juxtaposition is critical. This paper experimentally quantifies for the first time a Hydrogen Bond‐Enhanced Halogen Bond (HBeXB) without the complexities of protein structure or preorganization. An HBeXB is a halogen bond that has been strengthened when the halogen donor simultaneously accepts a hydrogen bond. Our theoretical studies suggest that electron‐rich halogen bond donors are strengthened most by an adjacent hydrogen bond. Furthermore, stronger hydrogen bond donors enhance the halogen bond the most. X‐ray crystal structures of halide complexes (X−=Br−, I−) reveal that HBeXBs produce shorter halogen bonds than non‐hydrogen bond analogues.19F NMR titrations with chloride highlight that the HBeXB analogue exhibits stronger binding. Together, these results form the foundation for future studies concerning hydrogen bonds and halogen bonds in close proximity.
-
The amino group of 2-amino-5-(4-halophenyl)-1,3,4-chalcogenadiazole has been replaced with bromo/iodo substituents to obtain a library of four compositionally related compounds. These are 2-iodo-5-(4-iodophenyl)-1,3,4-thiadiazole, C8H4I2N2S, 2-bromo-5-(4-bromophenyl)-1,3,4-selenadiazole, C8H4Br2N2Se, 2-bromo-5-(4-iodophenyl)-1,3,4-selenadiazole, C8H4BrIN2Se, and 2-bromo-5-(4-iodophenyl)-1,3,4-thiadiazole, C8H4BrIN2S. All were isostructural and contained bifurcated Ch...N (Ch is chalcogen) and
X ...X (X is halogen) interactions forming a zigzag packing motif. The noncovalent Ch...N interaction between the chalcogen-bond donor and the best-acceptor N atom appeared preferentially instead of a possible halogen bond to the same N atom. Hirshfeld surface analysis and energy framework calculations showed that, collectively, a bifurcated chalcogen bond was stronger than halogen bonding and this is more structurally influential in this system. -
Abstract As appreciation for nonclassical hydrogen bonds has progressively increased, so have efforts to characterize these interesting interactions. Whereas several kinds of C−H hydrogen bonds have been well‐studied, much less is known about the R3N+−C−H⋅⋅⋅X variety. Herein, we present crystallographic and spectroscopic evidence for the existence of these interactions, with special relevance to Selectfluor chemistry. Of particular note is the propensity for Lewis bases to engage in nonclassical hydrogen bonding over halogen bonding with the electrophilic F atom of Selectfluor. Further, the first examples of1H NMR experiments detailing R3N+−C−H⋅⋅⋅X (X=O, N) hydrogen bonds are described.
-
Abstract The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2(Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2with B(CH3)3and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.