skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The CGM 2 Survey: Quenching and the Transformation of the Circumgalactic Medium
Abstract This study addresses how the incidence rate of strong O vi absorbers in a galaxy’s circumgalactic medium (CGM) depends on galaxy mass and, independently, on the amount of star formation in the galaxy. We use Hubble Space Telescope/Cosmic Origins Spectrograph absorption spectroscopy of quasars to measure O vi absorption within 400 projected kpc and 300 km s −1 of 52 galaxies with M * ∼ 3 × 10 10 M ⊙ . The galaxies have redshifts 0.12 < z < 0.6, stellar masses 10 10.1 M ⊙ < M * < 10 10.9 M ⊙ , and spectroscopic classifications as star-forming or passive. We compare the incidence rates of high column density O vi absorption ( N O VI ≥ 10 14.3 cm −2 ) near star-forming and passive galaxies in two narrow ranges of stellar mass and, separately, in a matched range of halo mass. In all three mass ranges, the O vi covering fraction within 150 kpc is higher around star-forming galaxies than around passive galaxies with greater than 3 σ -equivalent statistical significance. On average, the CGM of star-forming galaxies with M * ∼ 3 × 10 10 M ⊙ contains more O vi than the CGM of passive galaxies with the same mass. This difference is evidence for a CGM transformation that happens together with galaxy quenching and is not driven primarily by halo mass.  more » « less
Award ID(s):
2044303
PAR ID:
10422980
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
949
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
41
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We combine 126 new galaxy-O vi absorber pairs from the CGM 2 survey with 123 pairs drawn from the literature to examine the simultaneous dependence of the column density of O vi absorbers ( N O VI ) on galaxy stellar mass, star-formation rate, and impact parameter. The combined sample consists of 249 galaxy-O vi absorber pairs covering z = 0–0.6, with host galaxy stellar masses M * = 10 7.8 –10 11.2 M ⊙ and galaxy-absorber impact parameters R ⊥ = 0–400 proper kiloparsecs. In this work, we focus on the variation of N O VI with galaxy mass and impact parameter among the star-forming galaxies in the sample. We find that the average N O VI within one virial radius of a star-forming galaxy is greatest for star-forming galaxies with M * = 10 9.2 –10 10 M ⊙ . Star-forming galaxies with M * between 10 8 and 10 11.2 M ⊙ can explain most O vi systems with column densities greater than 10 13.5 cm −2 . Sixty percent of the O vi mass associated with a star-forming galaxy is found within one virial radius, and 35% is found between one and two virial radii. In general, we find that some departure from hydrostatic equilibrium in the CGM is necessary to reproduce the observed O vi amount, galaxy mass dependence, and extent. Our measurements serve as a test set for CGM models over a broad range of host galaxy masses. 
    more » « less
  2. Abstract The shallow potential wells of star-forming dwarf galaxies make their surrounding circumgalactic and intergalactic medium (CGM/IGM) sensitive laboratories for studying the inflows and outflows thought to regulate galaxy evolution. We present new absorption-line measurements in quasar sight lines, probing within projected distances of <300 kpc from 91 star-forming field dwarf galaxies with a median stellar mass of log M / M 8.3 at 0.077 <z< 0.73, from the Cosmic Ultraviolet Baryon Survey (CUBS). In this redshift range, the CUBS quasar spectra cover a suite of transitions including Hi, low, and intermediate metal ions (e.g., Cii, Siii, Ciii, and Siiii), and highly ionized Ovi. This CUBS-Dwarfs survey enables constraints with samples nine times larger than past dwarf CGM/IGM studies with similar ionic coverage. We find that low and intermediate ionization metal absorption is rare around dwarf galaxies, consistent with previous surveys of local dwarfs. In contrast, highly ionized Oviis commonly observed in sight lines that pass within the virial radius of a dwarf, and Ovidetection rates are nonnegligible at projected distances of 1−2× the virial radius. Based on these measurements, we estimate that the Ovi-bearing phase of the CGM/IGM accounts for a dominant share of the metal budget of dwarf galaxies. The absorption kinematics suggest that a relatively modest fraction of the Ovi-bearing gas is formally unbound. Together, these results imply that low-mass systems atz≲ 1 effectively retain a substantial fraction of their metals within the nearby CGM and IGM. 
    more » « less
  3. null (Ed.)
    ABSTRACT Observations of ultraviolet (UV) metal absorption lines have provided insight into the structure and composition of the circumgalactic medium (CGM) around galaxies. We compare these observations with the low-redshift (z ≤ 0.3) CGM around dwarf galaxies in high-resolution cosmological zoom-in runs in the FIRE-2 (Feedback In Realistic Environments) simulation suite. We select simulated galaxies that match the halo mass, stellar mass, and redshift of the observed samples. We produce absorption measurements using trident for UV transitions of C iv, O vi, Mg ii, and Si iii. The FIRE equivalent width (EW) distributions and covering fractions for the C iv ion are broadly consistent with observations inside 0.5Rvir, but are underpredicted for O vi, Mg ii, and Si iii. The absorption strengths of the ions in the CGM are moderately correlated with the masses and star formation activity of the galaxies. The correlation strengths increase with the ionization potential of the ions. The structure and composition of the gas from the simulations exhibit three zones around dwarf galaxies characterized by distinct ion column densities: the discy interstellar medium, the inner CGM (the wind-dominated regime), and the outer CGM (the IGM accretion-dominated regime). We find that the outer CGM in the simulations is nearly but not quite supported by thermal pressure, so it is not in hydrostatic equilibrium, resulting in halo-scale bulk inflow and outflow motions. The net gas inflow rates are comparable to the star formation rate of the galaxy, but the bulk inflow and outflow rates are greater by an order of magnitude, with velocities comparable to the virial velocity of the halo. These roughly virial velocities ($${\sim } 100 \, \rm km\, s^{-1}$$) produce large EWs in the simulations. This supports a picture for dwarf galaxies in which the dynamics of the CGM at large scales are coupled to the small-scale star formation activity near the centre of their haloes. 
    more » « less
  4. Abstract This paper presents a newly established sample of 103 unique galaxies or galaxy groups at 0.4 ≲z≲ 0.7 from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both Oviand Neviiiabsorption. The galaxies and associated neighbors are identified at <1 physical Mpc from the sightlines toward 15 CUBS QSOs atzQSO≳ 0.8. A total of 30 galaxies or galaxy groups exhibit associated Oviλλ1031, 1037 doublet absorption within a line-of-sight velocity interval of ±250 km s−1, while the rest show no trace of Ovito a detection limit of log N OVI / cm 2 13.7 . Meanwhile, only five galaxies or galaxy groups exhibit the Neviiiλλ770, 780 doublet absorption, down to a limiting column density of log N NeVIII / cm 2 14.0 . These Ovi- and Neviii-bearing halos reside in different galaxy environments with stellar masses ranging from log M star / M 8 to ≈11.5. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with log M star / M 9 11 show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of Oviabsorption is broad withσυ> 40 km s−1for galaxies of log M star / M > 9 within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by Oviand Neviiiis suggested to be the dominant phase in sub-L* galaxies with log M star / M 9 10 based on their high ionization fractions in the CGM. 
    more » « less
  5. Abstract The high incidence rate of the O vi λλ 1032, 1038 absorption around low-redshift, ∼ L * star-forming galaxies has generated interest in studies of the circumgalactic medium. We use the high-resolution EAGLE cosmological simulation to analyze the circumgalactic O vi gas around z ≈ 0.3 star-forming galaxies. Motivated by the limitation that observations do not reveal where the gas lies along the line of sight, we compare the O vi measurements produced by gas within fixed distances around galaxies and by gas selected using line-of-sight velocity cuts commonly adopted by observers. We show that gas selected by a velocity cut of ±300 km s −1 or ±500 km s −1 produces a higher O vi column density, a flatter column density profile, and a higher covering fraction compared to gas within 1, 2, or 3 times the virial radius ( r vir ) of galaxies. The discrepancy increases with impact parameter and worsens for lower-mass galaxies. For example, compared to the gas within 2 r vir , identifying the gas using velocity cuts of 200–500 km s −1 increases the O vi column density by 0.2 dex (0.1 dex) at 1 r vir to over 0.75 dex (0.7 dex) at ≈ 2 r vir for galaxies with stellar masses of 10 9 –10 9.5 M ⊙ (10 10 –10 10.5 M ⊙ ). We furthermore estimate that excluding O vi outside r vir decreases the circumgalactic oxygen mass measured by Tumlinson et al. (2011) by over 50%. Our results demonstrate that gas at large line-of-sight separations but selected by conventional velocity windows has significant effects on the O vi measurements and may not be observationally distinguishable from gas near the galaxies. 
    more » « less