skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Microstructural Changes in Ni-YSZ Electrodes Operated in Fuel Cell and Electrolysis Modes: Effect of Gas Diffusion Limitations
Ni-YSZ electrode support symmetric cells were operated at 0, 0.75, 1.00, and 1.50 A/cm 2 for 1000 h in 50% H 2 -50% H 2 O at 800 ˚C. Electrochemical fracture at the anode-electrolyte interface is observed to occur under high anodic overpotential. Ni migration is observed and quantified over time at the anode of the polarized cells; however, the cathode shows no migration compared to control. Gas diffusion calculations show that steam is significantly enriched and depleted at the anode and cathode respectively, leading to the formation or suppression of volatile Ni(OH) x species, which have been hypothesized as a transport pathway for Ni. However; gas flux calculations show that chemical evaporation alone is unlikely to be fast enough to induce the Ni loss observed.  more » « less
Award ID(s):
1912530
PAR ID:
10422982
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ECS Transactions
Volume:
111
Issue:
6
ISSN:
1938-5862
Page Range / eLocation ID:
1907 to 1916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anode-free lithium-sulfur batteries feature a cell design with a fully-lithiated cathode and a bare current collector as an anode to control the total amount of lithium in the cell. The lithium stripping and deposition is a key factor in designing an anode-free full cell to realize a practical cell configuration. To realize effective anode protection and achieve a good performance of the anode-free full cell, the manipulation of the electrolyte chemistry toward the modification of the solid-electrolyte interphase on the anode is considered a feasible approach. In this study, the use of neodymium triflate, Nd(OTf)3, as a dual-function electrolyte additive is demonstrated to promote homogeneous catalysis on the cathode conversion reactions and the anode stabilization. Nd(OTf)3 not only facilitates the conversion reaction by promoting the polysulfide adsorption, but also effectively protects the lithium-metal anode and stabilizes the lithium stripping and deposition during cycling. With this electrolyte modification, both Li ǁ Li2S half cells and Ni ǁ Li2S anode-free full cells support a high areal capacity of 5.5 – 7.0 mA h cm-2 and maintain a high Coulombic efficiency of 94 – 95% during cycling. 
    more » « less
  2. null (Ed.)
    To directly use a CO 2 –CH 4 gas mixture for power and CO co-production by proton-conducting solid oxide fuel cells (H-SOFCs), a layer of in situ reduced La 0.6 Sr 0.2 Cr 0.85 Ni 0.15 O 3−δ (LSCrN@Ni) is fabricated on a Ni–BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ (BZCYYb) anode-supported H-SOFC (H-DASC) for on-cell CO 2 dry reforming of CH 4 (DRC). For demonstrating the effectiveness of LSCrN@Ni, a cell without adding the LSCrN@Ni catalyst (H-CASC) is also studied comparatively. Fueled with H 2 , both H-CASC and H-DASC show similar stable performance with a maximum power density ranging from 0.360 to 0.816 W cm −2 at temperatures between 550 and 700 °C. When CO 2 –CH 4 is used as the fuel, the performance and stability of H-CASC decreases considerably with a maximum power density of 0.287 W cm −2 at 700 °C and a sharp drop in cell voltage from the initial 0.49 to 0.10 V within 20 h at 0.6 A cm −2 . In contrast, H-DASC demonstrates a maximum power density of 0.605 W cm −2 and a stable cell voltage above 0.65 V for 65 h. This is attributed to highly efficient on-cell DRC by LSCrN@Ni. 
    more » « less
  3. Alkaline fuel cells enable the use of earth-abundant elements to replace Pt but are hindered by the sluggish kinetics of the hydrogen oxidation reaction (HOR) in alkaline media. Precious metal–free HOR electrocatalysts need to overcome two major challenges: their low intrinsic activity from too strong a hydrogen-binding energy and poor durability due to rapid passivation from metal oxide formation. Here, we designed a Ni-based electrocatalyst with a 2-nm nitrogen-doped carbon shell (Ni@CN x ) that serves as a protection layer and significantly enhances HOR kinetics. A Ni@CN x anode, paired with a Co−Mn spinel cathode, exhibited a record peak power density of over 200 mW/cm 2 in a completely precious metal–free alkaline membrane fuel cell. Ni@CN x exhibited superior durability when compared to a Ni nanoparticle catalyst due to the enhanced oxidation resistance provided by the CN x layer. Density functional theory calculations suggest that graphitic carbon layers on the surface of the Ni nanoparticles lower the H binding energy to Ni, bringing it closer to the previously predicted value for optimal HOR activity, and single Ni atoms anchored to pyridinic or pyrrolic N defects of graphene can serve as the HOR active sites. The strategy described here marks a milestone in electrocatalyst design for low-cost hydrogen fuel cells and other energy technologies with completely precious metal–free electrocatalysts. 
    more » « less
  4. Li, Rong (Ed.)
    Recent research has elucidated mechanochemical pathways of single cell polarization, but much less is known about collective motility initiation in adhesive cell groups. We used galvanotactic assays of zebrafish keratocyte cell groups, pharmacological perturbations, electric field switches, particle imaging velocimetry, and cell tracking to show that large cell groups initiate motility in minutes toward the cathode. Interestingly, while PI3K-inhibited single cells are biased toward the anode, inhibiting PI3K does not affect the cathode-directed cell group migration. We observed that control groups had the fastest cathode-migrating cell at the front, while the front cells in PI3K-inhibited groups were the slowest. Both control and PI3K-inhibited groups rapidly repolarized when the electric field direction was reversed, and the group migration continued after the electric field was switched off. Inhibiting myosin disrupted the cohesiveness of keratocyte groups and abolished the collective directionality and ability to switch direction when the electric field is reversed. Our data are consistent with a model according to which cells in the group sense the electric field individually and mechanical integration of the cells results in coherent group motility. 
    more » « less
  5. Aqueous zinc ion batteries (ZIBs) are emerging as a highly promising alternative technology for grid-scale applications where high safety, environmental-friendliness, and high specific capacities are needed. It remains a significant challenge, however, to develop a cathode with a high rate capability and long-term cycling stability. Here, we demonstrate diffusion-controlled behavior in the intercalation of zinc ions into highly porous, Mn 4+ -rich, and low-band-gap Ni x Mn 3−x O 4 nano-particles with a carbon matrix formed in situ (with the composite denoted as Ni x Mn 3−x O 4 @C, x = 1), which exhibits superior rate capability (139.7 and 98.5 mA h g −1 at 50 and 1200 mA g −1 , respectively) and outstanding cycling stability (128.8 mA h g −1 remaining at 400 mA g −1 after 850 cycles). Based on the obtained experimental results and density functional theory (DFT) calculations, cation-site Ni substitution combined with a sufficient doping concentration can decrease the band gap and effectively improve the electronic conductivity in the crystal. Furthermore, the amorphous carbon shell and highly porous Mn 4+ -rich structure lead to fast electron transport and short Zn 2+ diffusion paths in a mild aqueous electrolyte. This study provides an example of a technique to optimize cathode materials for high-performance rechargeable ZIBs and design advanced intercalation-type materials for other energy storage devices. 
    more » « less