skip to main content


This content will become publicly available on June 15, 2024

Title: Structural origin and rational development of bright red noncanonical variants of green fluorescent protein
The incorporation of noncanonical amino acids (ncAAs) into fluorescent proteins is promising for red-shifting their fluorescence and benefiting tissue imaging with deep penetration and low phototoxicity. However, ncAA-based red fluorescent proteins (RFPs) have been rare. The 3-aminotyrosine modified superfolder green fluorescent protein (aY-sfGFP) represents a recent advance, yet the molecular mechanism for its red-shifted fluorescence remains elusive while its dim fluorescence hinders applications. Herein, we implement femtosecond stimulated Raman spectroscopy to obtain structural fingerprints in the electronic ground state and reveal that aY-sfGFP possesses a GFP-like instead of RFP-like chromophore. Red color of aY-sfGFP intrinsically arises from a unique “double-donor” chromophore structure that raises ground-state energy and enhances charge transfer, notably differing from the conventional conjugation mechanism. We further developed two aY-sfGFP mutants (E222H and T203H) with significantly improved (∼12-fold higher) brightness by rationally restraining the chromophore's nonradiative decay through electronic and steric effects, aided by solvatochromic and fluorogenic studies of the model chromophore in solution. This study thus provides functional mechanisms and generalizable insights into ncAA-RFPs with an efficient route for engineering redder and brighter fluorescent proteins.  more » « less
Award ID(s):
1817949 2003550
NSF-PAR ID:
10423105
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
25
Issue:
23
ISSN:
1463-9076
Page Range / eLocation ID:
15624 to 15634
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next‐generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady‐state and time‐resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinentcistransisomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited‐state proton transfer in various LSSRFPs showcases the resolving power of wavelength‐tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red‐emitting species. Moreover, recent progress in noncanonical RFPs with a site‐specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.

     
    more » « less
  2. The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore–environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore–environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions. 
    more » « less
  3. Green fluorescent proteins (GFP) and their blue, cyan and red counterparts offer unprecedented advantages as biological markers owing to their genetic encodability and straightforward expression in different organisms. Although significant advancements have been made towards engineering the key photo-physical properties of red fluorescent proteins (RFPs), they continue to perform sub-optimally relative to GFP variants. Advanced engineering strategies are needed for further evolution of RFPs in the pursuit of improving their photo-physics. In this report, a microfluidic sorter that discriminates members of a cell-based library based on their excited state lifetime and fluorescence intensity is used for the directed evolution of the photo-physical properties of FusionRed. In-flow measurements of the fluorescence lifetime are performed in a frequency-domain approach with sub-millisecond sampling times. Promising clones are sorted by optical force trapping with an infrared laser. Using this microfluidic sorter, mutants are generated with longer lifetimes than their precursor, FusionRed. This improvement in the excited state lifetime of the mutants leads to an increase in their fluorescence quantum yield up to 1.8-fold. In the course of evolution, we also identified one key mutation (L177M), which generated a mutant (FusionRed-M) that displayed ∼2-fold higher brightness than its precursor upon expression in mammalian (HeLa) cells. Photo-physical and mutational analyses of clones isolated at the different stages of mutagenesis reveal the photo-physical evolution towards higher in vivo brightness. 
    more » « less
  4. Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca2+) concentrations in vivo with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions. Using steady-state electronic measurements (UV/Visible absorption and emission), along with time-resolved spectroscopic techniques including femtosecond transient absorption (fs-TA) and femtosecond stimulated Raman spectroscopy (FSRS), the potential energy surfaces of these unique biosensors are unveiled with vivid details. The ground-state structural characterization of the Ca2+-free biosensor via FSRS reveals a more spacious protein pocket that allows the chromophore to efficiently twist and reach a dark state. In contrast, the more compressed cavity within the Ca2+-bound biosensor results in a more heterogeneous distribution of chromophore populations that results in multi-step excited state proton transfer (ESPT) pathways on the sub-140 fs, 600 fs, and 3 ps timescales. These results enable rational design strategies to enlarge the spectral separation between the protonated/deprotonated forms and the Stokes shift leading to a larger dynamic range and potentially higher fluorescence quantum yield, which should be broadly applicable to the calcium imaging and biosensor communities. 
    more » « less
  5. The presence of dark states causes fluorescence intermittency of single molecules due to transitions between “on” and “off” states. Genetically encodable markers such as fluorescent proteins (FPs) exhibit dark states that make several super-resolved single-molecule localization microscopy (SMLM) methods possible. However, studies quantifying the timescales and nature of dark state behavior for commonly used FPs under conditions typical of widefield and total internal reflection fluorescence (TIRF) microscopy remain scarce and pre-date many new SMLM techniques. FusionRed is a relatively bright red FP exhibiting fluorescence intermittency and has thus been identified as a potential candidate for SMLM. We herein characterize the rates for dark-state conversion and the subsequent ground-state recovery of FusionRed and its 2.5-fold brighter descendent FusionRed L175M M42Q (FusionRed-MQ) at low irradiances (1–10 W cm −2 ), which were previously unexplored experimental conditions. We characterized the kinetics of dark state transitions in these two FPs by using single molecule blinking and ensemble photobleaching experiments bridged with a dark state kinetic model. We find that at low irradiances, the recovery process to the ground state is minimally light-driven and FusionRed-MQ has a 1.3-fold longer ground state recovery time indicating a conformationally restricted dark-state chromophore in comparison to FusionRed. Our studies indicate that the brighter FusionRed-MQ variant exhibits higher dark state conversion rates with longer ground state recovery lifetimes, thus it is potentially a better candidate for SMLM applications than its progenitor FusionRed. 
    more » « less