skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins
Abstract Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next‐generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady‐state and time‐resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinentcis‐transisomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited‐state proton transfer in various LSSRFPs showcases the resolving power of wavelength‐tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red‐emitting species. Moreover, recent progress in noncanonical RFPs with a site‐specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.  more » « less
Award ID(s):
1817949 2003550
PAR ID:
10468808
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – An Asian Journal
Volume:
18
Issue:
20
ISSN:
1861-4728
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Large Stokes shift (LSS) red fluorescent proteins (RFPs) are highly desirable for bioimaging advances. The RFP mKeima, with coexistingcis‐andtrans‐isomers, holds significance as an archetypal system for LSS emission due to excited‐state proton transfer (ESPT), yet the mechanisms remain elusive. We implemented femtosecond stimulated Raman spectroscopy (FSRS) and various time‐resolved electronic spectroscopies, aided by quantum calculations, to dissect thecis‐ andtrans‐mKeima photocycle from ESPT, isomerization, to ground‐state proton transfer in solution. This work manifests the power of FSRS with global analysis to resolve Raman fingerprints of intermediate states. Importantly, the deprotonatedtrans‐isomer governs LSS emission at 620 nm, while the deprotonatedcis‐isomer's 520 nm emission is weak due to an ultrafastcis‐to‐transisomerization. Complementary spectroscopic techniques as a table‐top toolset are thus essential to study photochemistry in physiological environments. 
    more » « less
  2. The incorporation of noncanonical amino acids (ncAAs) into fluorescent proteins is promising for red-shifting their fluorescence and benefiting tissue imaging with deep penetration and low phototoxicity. However, ncAA-based red fluorescent proteins (RFPs) have been rare. The 3-aminotyrosine modified superfolder green fluorescent protein (aY-sfGFP) represents a recent advance, yet the molecular mechanism for its red-shifted fluorescence remains elusive while its dim fluorescence hinders applications. Herein, we implement femtosecond stimulated Raman spectroscopy to obtain structural fingerprints in the electronic ground state and reveal that aY-sfGFP possesses a GFP-like instead of RFP-like chromophore. Red color of aY-sfGFP intrinsically arises from a unique “double-donor” chromophore structure that raises ground-state energy and enhances charge transfer, notably differing from the conventional conjugation mechanism. We further developed two aY-sfGFP mutants (E222H and T203H) with significantly improved (∼12-fold higher) brightness by rationally restraining the chromophore's nonradiative decay through electronic and steric effects, aided by solvatochromic and fluorogenic studies of the model chromophore in solution. This study thus provides functional mechanisms and generalizable insights into ncAA-RFPs with an efficient route for engineering redder and brighter fluorescent proteins. 
    more » « less
  3. Photoconvertible fluorescent proteins (pcFPs) have enabled exquisite images of cellular structures due to their genetic encodability and red-shifted emission with high brightness, hence receiving increased traction in the field. However, the red form of Kaede-like pcFPs after photoconversion remains underexplored. We implemented ultrafast electronic and vibrational spectroscopies on the red Kaede chromophore in solution vs the protein pocket of the least-evolved ancestor (LEA, a Kaede-like green-to-red pcFP) to gain crucial insights into the photophysical processes of the chromophore. The measured fluorescence quantum yield (FQY) values were correlated with ultrafast dynamics to reveal that hydrogen-bonding interactions with the solvent can quench the excited-state Kaede in solution. A viscosity-dependent sub-ps decay indicates nonradiative relaxation involving swift chromophore conformational motions. Femtosecond transient absorption and stimulated Raman spectroscopy (FSRS) reveal an additional ∼1 ps decay of the photoconverted red form of LEA that is absent in green LEA before photoconversion. Transient structural dynamics from FSRS elucidate this decay to involve the phenolate and imidazolinone ring twists that are implicated during cis → trans isomerization and on → off photoswitching in phototransformable fluorescent proteins (FPs). Compared to green-emitting species, the FQY of red LEA (∼0.58) and many other red FPs are often reduced, limiting their applications in modern bioimaging techniques. By shining more light on the often overlooked photoconverted form of pcFPs with ultrafast spectroscopies, we envision such essential mechanistic insights to enable a bottom-up approach for rationally improving the brightness of red-emitting LEA and many other controllable bioprobes, including FPs. 
    more » « less
  4. Green fluorescent proteins (GFP) and their blue, cyan and red counterparts offer unprecedented advantages as biological markers owing to their genetic encodability and straightforward expression in different organisms. Although significant advancements have been made towards engineering the key photo-physical properties of red fluorescent proteins (RFPs), they continue to perform sub-optimally relative to GFP variants. Advanced engineering strategies are needed for further evolution of RFPs in the pursuit of improving their photo-physics. In this report, a microfluidic sorter that discriminates members of a cell-based library based on their excited state lifetime and fluorescence intensity is used for the directed evolution of the photo-physical properties of FusionRed. In-flow measurements of the fluorescence lifetime are performed in a frequency-domain approach with sub-millisecond sampling times. Promising clones are sorted by optical force trapping with an infrared laser. Using this microfluidic sorter, mutants are generated with longer lifetimes than their precursor, FusionRed. This improvement in the excited state lifetime of the mutants leads to an increase in their fluorescence quantum yield up to 1.8-fold. In the course of evolution, we also identified one key mutation (L177M), which generated a mutant (FusionRed-M) that displayed ∼2-fold higher brightness than its precursor upon expression in mammalian (HeLa) cells. Photo-physical and mutational analyses of clones isolated at the different stages of mutagenesis reveal the photo-physical evolution towards higher in vivo brightness. 
    more » « less
  5. Abstract mCherry is one of the most successfully applied monomeric red fluorescent proteins (RFPs) for in vivo and in vitro imaging. However, questions pertaining to the photostability of the RFPs remain and rational further engineering of their photostability requires information about the fluorescence quenching mechanism in solution. To this end, NMR spectroscopic investigations might be helpful, and we present the near-complete backbone NMR chemical shift assignment to aid in this pursuit. 
    more » « less