Accurate nuclear reaction rates for26P(
- Award ID(s):
- 1927130
- NSF-PAR ID:
- 10423112
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 950
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- Article No. 133
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)In Type-I X-ray bursts (XRBs), the rapid-proton capture (rp-) process passes through the NiCu and ZnGa cycles before reaching the region above Ge and Se isotopes that hydrogen burning actively powers the XRBs. The sensitivity study performed by Cyburt et al . [1] shows that the 57 Cu(p, γ ) 58 Zn reaction in the NiCu cycles is the fifth most important rp-reaction influencing the burst light curves. Langer et al . [2] precisely measured some low-lying energy levels of 58 Zn to deduce the 57 Cu(p, γ ) 58 Zn reaction rate. Nevertheless, the order of the 1 + 1 and 2 + 3 resonance states that dominate at 0:2 ≲ T (GK) ≲ 0:8 is not confirmed. The 1 + 2 resonance state, which dominates at the XRB sensitive temperature regime 0:8 ≲ T (GK) ≲ 2 was not detected. Using isobaric-multipletmass equation (IMME), we estimate the order of the 1 + 1 and 2 + 3 resonance states and estimate the lower limit of the 1 + 2 resonance energy. We then determine the 57 Cu(p, γ ) 58 Zn reaction rate using the full pf -model space shell model calculations. The new rate is up to a factor of four lower than the Forstner et al . [3] rate recommended by JINA REACLIBv2.2. Using the present 57 Cu(p, γ ) 58 Zn, the latest 56 Ni(p, γ ) 57 Cu and 55 Ni(p, γ ) 56 Cu reaction rates, and 1D implicit hydrodynamic K epler code, we model the thermonuclear XRBs of the clocked burster GS 1826–24. We find that the new rates regulate the reaction flow in the NiCu cycles and strongly influence the burst-ash composition. The 59 Cu(p, γ ) 56 Ni and 59 Cu(p, α ) 60 Zn reactions suppress the influence of the 57 Cu(p, γ ) 58 Zn reaction. They strongly diminish the impact of the nuclear reaction flow that bypasses the 56 Ni waiting point induced by the 55 Ni(p, γ ) 56 Cu reaction on burst light curve.more » « less
-
Abstract During the X-ray bursts of GS 1826−24, a “clocked burster”, the nuclear reaction flow that surges through the rapid-proton capture process path has to pass through the NiCu cycles before reaching the ZnGa cycles that moderate further hydrogen burning in the region above the germanium and selenium isotopes. The 57 Cu(p, γ ) 58 Zn reaction that occurs in the NiCu cycles plays an important role in influencing the burst light curves found by Cyburt et al. We deduce the 57 Cu(p, γ ) 58 Zn reaction rate based on the experimentally determined important nuclear structure information, isobaric-multiplet-mass equation, and large-scale shell-model calculations. Based on the isobaric-multiplet-mass equation, we propose a possible order of 1 1 + - and 2 3 + -dominant resonance states and constrain the resonance energy of the 1 2 + state. The latter reduces the contribution of the 1 2 + -dominant resonance state. The new reaction rate is up to a factor of 4 lower than the Forstner et al. rate recommended by JINA REACLIB v2.2 at the temperature regime sensitive to clocked bursts of GS 1826−24. Using the simulation from the one-dimensional implicit hydrodynamic code K epler to model the thermonuclear X-ray bursts of the GS 1826−24 clocked burster, we find that the new 57 Cu(p, γ ) 58 Zn reaction rate, coupled with the latest 56 Ni(p, γ ) 57 Cu and 55 Ni(p, γ ) 56 Cu reaction rates, redistributes the reaction flow in the NiCu cycles and strongly influences the burst ash composition, whereas the 59 Cu(p, α ) 56 Ni and 59 Cu(p, γ ) 60 Zn reactions suppress the influence of the 57 Cu(p, γ ) 58 Zn reaction and diminish the impact of nuclear reaction flow that bypasses the important 56 Ni waiting point induced by the 55 Ni(p, γ ) 56 Cu reaction on the burst light curve.more » « less
-
Abstract We reassess the 65 As(p, γ ) 66 Se reaction rates based on a set of proton thresholds of 66 Se, S p ( 66 Se), estimated from the experimental mirror nuclear masses, theoretical mirror displacement energies, and full p f -model space shell-model calculation. The self-consistent relativistic Hartree–Bogoliubov theory is employed to obtain the mirror displacement energies with much reduced uncertainty, and thus reducing the proton-threshold uncertainty up to 161 keV compared to the AME2020 evaluation. Using the simulation instantiated by the one-dimensional multi-zone hydrodynamic code, K epler , which closely reproduces the observed GS 1826−24 clocked bursts, the present forward and reverse 65 As(p, γ ) 66 Se reaction rates based on a selected S p ( 66 Se) = 2.469 ± 0.054 MeV, and the latest 22 Mg( α ,p) 25 Al, 56 Ni(p, γ ) 57 Cu, 57 Cu(p, γ ) 58 Zn, 55 Ni(p, γ ) 56 Cu, and 64 Ge(p, γ ) 65 As reaction rates, we find that though the GeAs cycles are weakly established in the rapid-proton capture process path, the 65 As(p, γ ) 66 Se reaction still strongly characterizes the burst tail end due to the two-proton sequential capture on 64 Ge, not found by the Cyburt et al. sensitivity study. The 65 As(p, γ ) 66 Se reaction influences the abundances of nuclei A = 64, 68, 72, 76, and 80 up to a factor of 1.4. The new S p ( 66 Se) and the inclusion of the updated 22 Mg( α ,p) 25 Al reaction rate increases the production of 12 C up to a factor of 4.5, which is not observable and could be the main fuel for a superburst. The enhancement of the 12 C mass fraction alleviates the discrepancy in explaining the origin of the superburst. The waiting point status of and two-proton sequential capture on 64 Ge, the weak-cycle feature of GeAs at a region heavier than 64 Ge, and the impact of other possible S p ( 66 Se) are also discussed.more » « less
-
Context. The γ -process nucleosynthesis in core-collapse supernovae is generally accepted as a feasible process for the synthesis of neutron-deficient isotopes beyond iron. However, crucial discrepancies between theory and observations still exist: the average yields of γ -process nucleosynthesis from massive stars are still insufficient to reproduce the solar distribution in galactic chemical evolution calculations, and the yields of the Mo and Ru isotopes are a factor of ten lower than the yields of the other γ -process nuclei. Aims. We investigate the γ -process in five sets of core-collapse supernova models published in the literature with initial masses of 15, 20, and 25 M ⊙ at solar metallicity. Methods. We compared the γ -process overproduction factors from the different models. To highlight the possible effect of nuclear physics input, we also considered 23 ratios of two isotopes close to each other in mass relative to their solar values. Further, we investigated the contribution of C–O shell mergers in the supernova progenitors as an additional site of the γ -process. Results. Our analysis shows that a large scatter among the different models exists for both the γ -process integrated yields and the isotopic ratios. We find only ten ratios that agree with their solar values, all the others differ by at least a factor of three from the solar values in all the considered sets of models. The γ -process within C–O shell mergers mostly influences the isotopic ratios that involve intermediate and heavy proton-rich isotopes with A > 100. Conclusions. We conclude that there are large discrepancies both among the different data sets and between the model predictions and the solar abundance distribution. More calculations are needed; particularly updating the nuclear network, because the majority of the models considered in this work do not use the latest reaction rates for the γ -process nucleosynthesis. Moreover, the role of C–O shell mergers requires further investigation.more » « less
-
ABSTRACT Several anomalous elemental abundance ratios have been observed in the metal-poor star HD94028. We assume that its high [As/Ge] ratio is a product of a weak intermediate (i) neutron-capture process. Given that observational errors are usually smaller than predicted nuclear physics uncertainties, we have first set-up a benchmark one-zone i-process nucleosynthesis simulation results of which provide the best fit to the observed abundances. We have then performed Monte Carlo simulations in which 113 relevant (n,γ) reaction rates of unstable species were randomly varied within Hauser–Feshbach model uncertainty ranges for each reaction to estimate the impact on the predicted stellar abundances. One of the interesting results of these simulations is a double-peaked distribution of the As abundance, which is caused by the variation of the 75Ga (n,γ) cross-section. This variation strongly anticorrelates with the predicted As abundance, confirming the necessity for improved theoretical or experimental bounds on this cross-section. The 66Ni (n,γ) reaction is found to behave as a major bottleneck for the i-process nucleosynthesis. Our analysis finds the Pearson product–moment correlation coefficient rP > 0.2 for all of the i-process elements with 32 ≤ Z ≤ 42, with significant changes in their predicted abundances showing up when the rate of this reaction is reduced to its theoretically constrained lower bound. Our results are applicable to any other stellar nucleosynthesis site with the similar i-process conditions, such as Sakurai’s object (V4334 Sagittarii) or rapidly accreting white dwarfs.