skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolutionary convergence in body shape obscures taxonomic diversity in species of the African Labeo forskalii group: Case study of L. parvus Boulenger 1902 and L. ogunensis Boulenger 1910
Award ID(s):
1655227
PAR ID:
10423290
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fish Biology
Volume:
101
Issue:
4
ISSN:
0022-1112
Page Range / eLocation ID:
898 to 913
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We compute moments of L-functions associated to the polynomial family of Artin–Schreier covers over $$\mathbb{F}_q$$, where q is a power of a prime p > 2, when the size of the finite field is fixed and the genus of the family goes to infinity. More specifically, we compute the $$k{\text{th}}$$ moment for a large range of values of k, depending on the sizes of p and q. We also compute the second moment in absolute value of the polynomial family, obtaining an exact formula with a lower order term, and confirming the unitary symmetry type of the family. 
    more » « less
  2. Abstract In this article, we obtain an optimal best-approximation-type result for fully discrete approximations of the transient Stokes problem. For the time discretization, we use the discontinuous Galerkin method and for the spatial discretization we use standard finite elements for the Stokes problem satisfying the discrete inf-sup condition. The analysis uses the technique of discrete maximal parabolic regularity. The results require only natural assumptions on the data and do not assume any additional smoothness of the solutions. 
    more » « less
  3. Abstract Deep penetration of energetic electrons (10s–100s of keV) to lowL‐shells (L < 4), as an important source of inner belt electrons, is commonly observed during geomagnetically active times. However, such deep penetration is not observed as frequently for similar energy protons, for which underlying mechanisms are not fully understood. To study their differential deep penetration, we conducted a statistical analysis using phase space densities (PSDs) ofµ = 10–50 MeV/G,K = 0.14 G1/2Re electrons and protons from multiyear Van Allen Probes observations. The results suggest systematic differences in electron and proton deep penetration: electron PSD enhancements at lowL‐shells occur more frequently, deeply, and faster than protons. Forµ = 10–50 MeV/G electrons, the occurrence rate of deep penetration events (defined as daily‐averaged PSD enhanced by at least a factor of 2 within a day atL < 4) is ∼2–3 events/month. For protons, only ∼1 event/month was observed forµ = 10 MeV/G, and much fewer events were identified forµ > 20 MeV/G. Leveraging dual‐Probe configurations, fast electron deep penetrations atL < 4 are revealed: ∼70% of electron deep penetration events occurred within ∼9 hr; ∼8%–13% occurred even within 3 hr, with lower‐µelectrons penetrating faster than higher‐µelectrons. These results suggest nondiffusive radial transport as the main mechanism of electron deep penetrations. In comparison, proton deep penetration happens at a slower pace. Statistics also show that the electron PSD radial gradient is much steeper than protons prior to deep penetration events, which can be responsible for these differential behaviors of electron and proton deep penetrations. 
    more » « less