skip to main content

Title: Fully discrete best-approximation-type estimates in L ∞ ( I ; L 2(Ω) d ) for finite element discretizations of the transient Stokes equations
Abstract In this article, we obtain an optimal best-approximation-type result for fully discrete approximations of the transient Stokes problem. For the time discretization, we use the discontinuous Galerkin method and for the spatial discretization we use standard finite elements for the Stokes problem satisfying the discrete inf-sup condition. The analysis uses the technique of discrete maximal parabolic regularity. The results require only natural assumptions on the data and do not assume any additional smoothness of the solutions.
; ;
Award ID(s):
Publication Date:
Journal Name:
IMA Journal of Numerical Analysis
Sponsoring Org:
National Science Foundation
More Like this
  1. We construct and analyze a CutFEM discretization for the Stokes problem based on the Scott–Vogelius pair. The discrete piecewise polynomial spaces are defined on macro-element triangulations which are not fitted to the smooth physical domain. Boundary conditions are imposed via penalization through the help of a Nitsche-type discretization, whereas stability with respect to small and anisotropic cuts of the bulk elements is ensured by adding local ghost penalty stabilization terms. We show stability of the scheme as well as a divergence–free property of the discrete velocity outside an O ( h ) neighborhood of the boundary. To mitigate the error caused by the violation of the divergence–free condition, we introduce local grad–div stabilization. The error analysis shows that the grad–div parameter can scale like O ( h −1 ), allowing a rather heavy penalty for the violation of mass conservation, while still ensuring optimal order error estimates.
  2. Abstract In this paper we consider a spatial discretization scheme with an adaptive grid for the Nagumo PDE. In particular, we consider a commonly used time dependent moving mesh method that aims to equidistribute the arclength of the solution under consideration. We assume that the discrete analogue of this equidistribution is strictly enforced, which allows us to reduce the effective dynamics to a scalar non-local problem with infinite range interactions. We show that this reduced problem is well-posed and obtain useful estimates on the resulting nonlinearities. In the sequel papers (Hupkes and Van Vleck in Travelling waves for adaptive grid discretizations of reaction diffusion systems II: linear theory; Travelling waves for adaptive grid discretizations of reaction diffusion systems III: nonlinear theory) we use these estimates to show that travelling waves persist under these adaptive spatial discretizations.
  3. We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase-field model. We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of our scheme.
  4. Abstract Combining the classical theory of optimal transport with modern operator splitting techniques, we develop a new numerical method for nonlinear, nonlocal partial differential equations, arising in models of porous media, materials science, and biological swarming. Our method proceeds as follows: first, we discretize in time, either via the classical JKO scheme or via a novel Crank–Nicolson-type method we introduce. Next, we use the Benamou–Brenier dynamical characterization of the Wasserstein distance to reduce computing the solution of the discrete time equations to solving fully discrete minimization problems, with strictly convex objective functions and linear constraints. Third, we compute the minimizers by applying a recently introduced, provably convergent primal dual splitting scheme for three operators (Yan in J Sci Comput 1–20, 2018). By leveraging the PDEs’ underlying variational structure, our method overcomes stability issues present in previous numerical work built on explicit time discretizations, which suffer due to the equations’ strong nonlinearities and degeneracies. Our method is also naturally positivity and mass preserving and, in the case of the JKO scheme, energy decreasing. We prove that minimizers of the fully discrete problem converge to minimizers of the spatially continuous, discrete time problem as the spatial discretization is refined. We conclude withmore »simulations of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illustrate the key properties of our approach, including higher-order convergence our novel Crank–Nicolson-type method, when compared to the classical JKO method.« less
  5. Abstract

    In this manuscript we propose and analyse a fully discrete, unconditionally stable finite element scheme for a recently developed director model for liquid crystalline flows (Metzger, S. (2020) On a novel approach for modeling liquid crystalline flows. Commun. Math. Sci., 18, 359–378). The model consists of nonlinear fourth-order partial differential equations describing the evolution of the director field and Navier–Stokes equations governing the velocity field. We employ a stable splitting approach to reduce the computational complexity by decoupling the update of the director field from the update of the velocity field. We also perform a rigorous passage to the limit as the spatial and temporal discretization parameters simultaneously tend to zero, and show that a subsequence of finite element approximations converges towards a weak solution of the original model. Passing to the limit in the nonlinear terms requires us to derive the strong convergence of the gradient of the director field from uniform bounds for its discrete Laplacian. Furthermore, we present simulations underlining the practicability of the proposed scheme, investigate its convergence properties and discuss the differences between the underlying model and already established Ericksen–Leslie-type models.