skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coexistence of solid and liquid phases in shear jammed colloidal drops
Abstract Complex fluids exhibit a variety of exotic flow behaviours under high stresses, such as shear thickening and shear jamming. Rheology is a powerful tool to characterise these flow behaviours over the bulk of the fluid. However, this technique is limited in its ability to probe fluid behaviour in a spatially resolved way. Here, we utilise high-speed imaging and the free-surface geometry in drop impact to study the flow of colloidal suspensions. Here, we report observations of coexisting solid and liquid phases due to shear jamming caused by impact. In addition to observing Newtonian-like spreading and bulk shear jamming, we observe the transition between these regimes in the form of localised patches of jammed suspension in the spreading drop. We capture shear jamming as it occurs via a solidification front travelling from the impact point, and show that the speed of this front is set by how far the impact conditions are beyond the shear thickening transition.  more » « less
Award ID(s):
2004176
PAR ID:
10423300
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nearly, all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition and give a complete theory of the viscosity in terms of a universal crossover scaling function from the frictionless jamming point to a rigidity transition associated with friction, anisotropy, and shear. Strikingly, we find experimentally that for two different systems—cornstarch in glycerol and silica spheres in glycerol—the viscosity can be collapsed onto a single universal curve over a wide range of stresses and volume fractions. The collapse reveals two separate scaling regimes due to a crossover between frictionless isotropic jamming and frictional shear jamming, with different critical exponents. The material-specific behavior due to the microscale particle interactions is incorporated into a scaling variable governing the proximity to shear jamming, that depends on both stress and volume fraction. This reformulation opens the door to importing the vast theoretical machinery developed to understand equilibrium critical phenomena to elucidate fundamental physical aspects of the shear thickening transition. 
    more » « less
  2. We introduce a novel approach to reveal ordering fluctuations in sheared dense suspensions, using line scanning in a combined rheometer and laser scanning confocal microscope. We validate the technique with a moderately dense suspension, observing modest shear-induced ordering and a nearly linear flow profile. At high concentration ( ϕ = 0.55) and applied stress just below shear thickening, we report ordering fluctuations with high temporal resolution, and directly measure a decrease in order with distance from the suspension’s bottom boundary as well as a direct correlation between order and particle concentration. Higher applied stress produces shear thickening with large fluctuations in boundary stress which we find are accompanied by dramatic fluctuations in suspension flow speeds. The peak flow rates are independent of distance from the suspension boundary, indicating that they likely arise from transient jamming that creates solid-like aggregates of particles moving together, but only briefly because the high speed fluctuations are interspersed with regions flowing much more slowly, suggesting that shear thickening suspensions possess complex internal structural dynamics, even in relatively simple geometries. 
    more » « less
  3. We report direct measurements of spatially resolved stress at the boundary of a shear-thickening cornstarch suspension revealing persistent regions of high local stress propagating in the flow direction at the speed of the top boundary. The persistence of these propagating fronts enables precise measurements of their structure, including the profile of boundary stress measured by boundary stress microscopy (BSM) and the nonaffine velocity of particles at the bottom boundary of the suspension measured by particle image velocimetry (PIV). In addition, we directly measure the relative flow between the particle phase and the suspending fluid (fluid migration) and find the migration is highly localized to the fronts and changes direction across the front, indicating that the fronts are composed of a localized region of high dilatant pressure and low particle concentration. The magnitude of the flow indicates that the pore pressure difference driving the fluid migration is comparable to the critical shear stress for the onset of shear thickening. The propagating fronts fully account for the increase in viscosity with applied stress reported by the rheometer and are consistent with the existence of a stable jammed region in contact with one boundary of the system that generates a propagating network of percolated frictional contacts spanning the gap between the rheometer plates and producing strong localized dilatant pressure. 
    more » « less
  4. null (Ed.)
    The geometric organization and force networks of 3D dense suspensions that exhibit both shear thinning and thickening have been examined as a function of varying strength of interparticle attractive interactions using lubrication flow discrete element simulations. Significant rearrangement of the geometric topology does not occur at either the local or global scale as these systems transition across the shear thinning and shear thickening regimes. In contrast, massive rearrangements in the balance of attractive, lubrication, and contact forces are observed with interesting behavior of network growth and competition. In agreement with prior work, in shear thinning regions the attractive force is dominant, however as the shear thickening region is approached there is growth of lubrication forces. Lubrication forces oppose the attraction forces, but as viscosity continues to increase under increasing shear stress, the lubrication forces are dominated by contact forces that also resist attraction. Contact forces are the dominant interactions during shear thickening and are an order of magnitude higher than their values in the shear-thinning regime. At high attractive interaction strength, contact networks can form even under shear thinning conditions, however high shear stress is still required before contact networks become the driving mechanism of shear thickening. Analysis of the contact force network during shear thickening generally indicates a uniformly spreading network that rapidly forms across empty domains; however the growth patterns exhibit structure that is significantly dependent upon the strength of interparticle interactions, indicating subtle variations in the mechanism of shear thickening. 
    more » « less
  5. During embryonic morphogenesis, tissues undergo dramatic deformations in order to form functional organs. Similarly, in adult animals, living cells and tissues are continually subjected to forces and deformations. Therefore, the success of embryonic development and the proper maintenance of physiological functions rely on the ability of cells to withstand mechanical stresses as well as their ability to flow in a collective manner. During these events, mechanical perturbations can originate from active processes at the single-cell level, competing with external stresses exerted by surrounding tissues and organs. However, the study of tissue mechanics has been somewhat limited to either the response to external forces or to intrinsic ones. In this work, we use an active vertex model of a 2D confluent tissue to study the interplay of external deformations that are applied globally to a tissue with internal active stresses that arise locally at the cellular level due to cell motility. We elucidate, in particular, the way in which this interplay between globally external and locally internal active driving determines the emergent mechanical properties of the tissue as a whole. For a tissue in the vicinity of a solid-fluid jamming or unjamming transition, we uncover a host of fascinating rheological phenomena, including yielding, shear thinning, continuous shear thickening, and discontinuous shear thickening. These model predictions provide a framework for understanding the recently observed nonlinear rheological behaviors in vivo. 
    more » « less