Hypothesis: The viscosity of dense suspensions surges when the applied stress surpasses a material-specific critical threshold. There is growing evidence that the thickening transition involves non-uniform flow and stress with considerable spatiotemporal complexity. Nevertheless, it is anticipated that dense suspensions of calcium carbonate particles with purely repulsive interactions may not conform to this scenario, as indicated by local pressure measurements with millimeter spatial resolution. Experiment: Here we utilize Boundary Stress Microscopy (BSM), a technique capable of resolving stresses down to the micron scale, to search for evidence of stress heterogeneity. In addition, we measure the flow field at the lower boundary of the suspension where the boundary stress is measured. Findings: We find localized regions of high-stresses that are extended in the vorticity direction and propagate in the flow direction at a speed approximately half that of the rheometer’s top plate. These high-stress regions proliferate with the applied stress accounting for the increased viscosity. Furthermore, the velocity of particles at the lower boundary of the suspension shows a significant and complex nonaffine flow that accompanies regions of high-stresses. Hence, our findings demonstrate that stress and flow inhomogeneity are intrinsic characteristics of shear-thickening suspensions, regardless of the nature of interparticle interactions. 
                        more » 
                        « less   
                    
                            
                            Order and density fluctuations near the boundary in sheared dense suspensions
                        
                    
    
            We introduce a novel approach to reveal ordering fluctuations in sheared dense suspensions, using line scanning in a combined rheometer and laser scanning confocal microscope. We validate the technique with a moderately dense suspension, observing modest shear-induced ordering and a nearly linear flow profile. At high concentration ( ϕ = 0.55) and applied stress just below shear thickening, we report ordering fluctuations with high temporal resolution, and directly measure a decrease in order with distance from the suspension’s bottom boundary as well as a direct correlation between order and particle concentration. Higher applied stress produces shear thickening with large fluctuations in boundary stress which we find are accompanied by dramatic fluctuations in suspension flow speeds. The peak flow rates are independent of distance from the suspension boundary, indicating that they likely arise from transient jamming that creates solid-like aggregates of particles moving together, but only briefly because the high speed fluctuations are interspersed with regions flowing much more slowly, suggesting that shear thickening suspensions possess complex internal structural dynamics, even in relatively simple geometries. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1809890
- PAR ID:
- 10445505
- Date Published:
- Journal Name:
- Frontiers in Physics
- Volume:
- 10
- ISSN:
- 2296-424X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We introduce a method for precise and accurate measurements of particle speeds in dense suspensions flowing at high rates and demonstrate the utility of the approach for revealing complex flow fluctuations during shearing in a setup that combines imaging with a confocal microscope and shearing with a rheometer. We scan the focal point in one dimension, aligned with direction of flow, producing absolute measurements of speed that are independent of suspension structure and particle shape. We compare this flow-direction line scanning approach with a complementary method we introduced previously, measuring speed using line scanning in the vorticity direction. By comparing results in various flow conditions, including shear-thinning and thickening regimes, we demonstrate the efficacy of our new approach. We find that both approaches exhibit qualitatively similar flow profiles, but a comparative analysis reveals a 15%–25% overestimation in speed measurement using vorticity line scanning, with discrepancies generated by anisotropic suspension microstructure under flow. Moreover, in the thickening regime where complex flow fields are present, both approaches capture local speed fluctuations. However, line scanning in the flow direction reveals and precisely captures stagnation and backflows, a capability not achievable with vorticity line scanning. The approach introduced here not only provides a refined technique for speed measurement in fast-flowing suspensions but also emphasizes the significance of accurate measurement techniques in advancing our understanding of flow behavior in dense suspensions, particularly in contexts where strong non-affine flows are prevalent.more » « less
- 
            We report direct measurements of spatially resolved stress at the boundary of a shear-thickening cornstarch suspension revealing persistent regions of high local stress propagating in the flow direction at the speed of the top boundary. The persistence of these propagating fronts enables precise measurements of their structure, including the profile of boundary stress measured by boundary stress microscopy (BSM) and the nonaffine velocity of particles at the bottom boundary of the suspension measured by particle image velocimetry (PIV). In addition, we directly measure the relative flow between the particle phase and the suspending fluid (fluid migration) and find the migration is highly localized to the fronts and changes direction across the front, indicating that the fronts are composed of a localized region of high dilatant pressure and low particle concentration. The magnitude of the flow indicates that the pore pressure difference driving the fluid migration is comparable to the critical shear stress for the onset of shear thickening. The propagating fronts fully account for the increase in viscosity with applied stress reported by the rheometer and are consistent with the existence of a stable jammed region in contact with one boundary of the system that generates a propagating network of percolated frictional contacts spanning the gap between the rheometer plates and producing strong localized dilatant pressure.more » « less
- 
            Discontinuous shear thickening (DST) is associated with a sharp rise in a suspension’s viscosity with increasing applied shear rate or stress. Key signatures of DST, highlighted in recent studies, are the very large fluctuations of the measured stress as the suspension thickens with increasing rate. A clear link between microstructural development and the dramatic increase in stress fluctuations has not been established yet. To identify the microstructural underpinnings of this behavior, we perform simulations of sheared dense suspensions. Through an analysis of the particle contact network, we identify a subset of constrained particles that contributes directly to the rapid rise in viscosity and large stress fluctuations. Indeed, both phenomena can be explained by the growth and percolation of constrained particle networks—in direct analogy to rigidity percolation. A finite size scaling analysis confirms this to be a percolation phenomenon and allows us to estimate the critical exponents. Our findings reveal the specific microstructural self-organization transition that underlies DST.more » « less
- 
            Hundreds of YouTube videos show people running on cornstarch suspensions demonstrating that dense shear thickening suspensions solidify under impact. Such processes are mimicked by impacting and pulling out a plate from the surface of a thickening cornstarch suspension. Here, using both experiments and simulations, we show that applying fast oscillatory shear transverse to the primary impact or extension directions tunes the degree of solidification. The forces acting on the impacting surface are modified by varying the dimensionless ratio of the orthogonal shear to the compression and extension flow rate. Simulations show varying this parameter changes the number of particle contacts governing solidification. To demonstrate this strategy in an untethered context, we show the sinking speed of a cylinder dropped onto the suspension varies markedly by changing this dimensionless ratio. These results suggest applying orthogonal shear while people are running on cornstarch would de-solidify the suspension and cause them to sink.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    