skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forced MHD Turbulence Data Set
The data is from a direct numerical simulation on a 10243 periodic grid of the incompressible MHD equations. (See README-MHD linked document for equations and further details.)  more » « less
Award ID(s):
2103874
PAR ID:
10423311
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Johns Hopkins Turbulence Databases
Date Published:
Edition / Version:
1.0
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Hall Magnetohydrodynamic (MHD) equations are an extension of the standard MHD equations that include the “Hall” term from the general Ohm’s law. The Hall term decouples ion and electron motion physically on the ion inertial length scales. Implementing the Hall MHD equations in a numerical solver allows more physical simulations for plasma dynamics on length scales less than the ion inertial scale length but greater than the electron inertial length. The present effort is an important step towards producing physically correct results to important problems, such as the Geospace Environmental Modeling (GEM) Magnetic Reconnection problem. The solver that is being modified is currently capable of solving the resistive MHD equations on unstructured grids using the spectral difference scheme which is an arbitrarily high-order method that is relatively simple to parallelize. The GEM Magnetic Reconnection problem is used to evaluate whether the Hall MHD equations have been correctly implemented in the solver using the spectral difference method with divergence cleaning (SDDC) algorithm by comparing against the reconnection rates reported in the literature. 
    more » « less
  2. The Hall Magnetohydrodynamic (MHD) equations are an extension of the standard MHD equations that include the “Hall” term from the general Ohm’s law. The Hall term decouples ion and electron motion physically on the ion inertial length scales. Implementing the Hall MHD equations in a numerical solver allows more physical simulations for plasma dynamics on length scales less than the ion inertial scale length but greater than the electron inertial length. The present effort is an important step towards producing physically correct results to important problems, such as the Geospace Environmental Modeling (GEM) Magnetic Reconnection problem. The solver that is being modified is currently capable of solving the resistive MHD equations on unstructured grids using the spectral differencing scheme which is an arbitrarily high-order method that is relatively simple to parallelize. The GEM Magnetic Reconnection problem is used to evaluate whether the Hall MHD equations have been correctly implemented in the solver using the spectral differencing method with divergence cleaning (SDDC) algorithm by comparing against the reconnection rates reported in the literature. 
    more » « less
  3. The Hall Magnetohydrodynamic (MHD) equations are an extension of the standard MHD equations that include the “Hall” term from the general Ohm’s law. The Hall term decouples ion and electron motion physically on the ion inertial length scales. Implementing the Hall MHD equations in a numerical solver allows more physical simulations for plasma dynamics on length scales less than the ion inertial scale length but greater than the electron inertial length. The present effort is an important step towards producing physically correct results to important problems, such as the Geospace Environmental Modeling (GEM) Magnetic Reconnection problem. The solver that is being modified is currently capable of solving the resistive MHD equations on unstructured grids using the spectral difference scheme which is an arbitrarily high-order method that is relatively simple to parallelize. The GEM Magnetic Reconnection problem is used to evaluate whether the Hall MHD equations have been correctly implemented in the solver using the spectral difference method with divergence cleaning (SDDC) algorithm by comparing against the reconnection rates reported in the literature. 
    more » « less
  4. Abstract Nearly incompressible magnetohydrodynamic (NI MHD) theory for β ∼ 1 (or β ≪ 1) plasma has been developed and applied to the study of solar wind turbulence. The leading-order term in β ∼ 1 or β ≪ 1 plasma describes the majority of 2D turbulence, while the higher-order term describes the minority of slab turbulence. Here, we develop new NI MHD turbulence transport model equations in the high plasma beta regime. The leading-order term in a β ≫ 1 plasma is fully incompressible and admits both structures (flux ropes or magnetic islands) and slab (Alfvén waves) fluctuations. This paper couples the NI MHD turbulence transport equations with three fluid (proton, electron, and pickup ion) equations, and solves the 1D steady-state equations from 1–75 au. The model is tested against 27 yr of Voyager 2 data, and Ulysses and NH SWAP data. The results agree remarkably well, with some scatter, about the theoretical predictions. 
    more » « less
  5. We present a divergence-free and $$\Hsp\LRp{div}$$-conforming hybridized discontinuous Galerkin (HDG) method and a computationally efficient variant called embedded-HDG (E-HDG) for solving stationary incompressible viso-resistive magnetohydrodynamic (MHD) equations. The proposed E-HDG approach uses continuous facet unknowns for the vector-valued solutions (velocity and magnetic fields) while it uses discontinuous facet unknowns for the scalar variable (pressure and magnetic pressure). This choice of function spaces makes E-HDG computationally far more advantageous, due to the much smaller number of degrees of freedom, compared to the HDG counterpart. The benefit is even more significant for three-dimensional/high-order/fine mesh scenarios. On simplicial meshes, the proposed methods with a specific choice of approximation spaces are well-posed for linear(ized) MHD equations. For nonlinear MHD problems, we present a simple approach exploiting the proposed linear discretizations by using a Picard iteration. The beauty of this approach is that the divergence-free and $$\Hsp\LRp{div}$$-conforming properties of the velocity and magnetic fields are automatically carried over for nonlinear MHD equations. We study the accuracy and convergence of our E-HDG method for both linear and nonlinear MHD cases through various numerical experiments, including two- and three-dimensional problems with smooth and singular solutions. The numerical examples show that the proposed methods are pressure robust, and the divergence of the resulting velocity and magnetic fields is machine zero for both smooth and singular problems. 
    more » « less