We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0 for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed HDG-P0 schemes, which hasn’t appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix–Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings.
more »
« less
This content will become publicly available on December 1, 2025
A divergence-free and H(div) -conforming embedded-hybridized DG method for the incompressible resistive MHD equations
We present a divergence-free and $$\Hsp\LRp{div}$$-conforming hybridized discontinuous Galerkin (HDG) method and a computationally efficient variant called embedded-HDG (E-HDG) for solving stationary incompressible viso-resistive magnetohydrodynamic (MHD) equations. The proposed E-HDG approach uses continuous facet unknowns for the vector-valued solutions (velocity and magnetic fields) while it uses discontinuous facet unknowns for the scalar variable (pressure and magnetic pressure). This choice of function spaces makes E-HDG computationally far more advantageous, due to the much smaller number of degrees of freedom, compared to the HDG counterpart. The benefit is even more significant for three-dimensional/high-order/fine mesh scenarios. On simplicial meshes, the proposed methods with a specific choice of approximation spaces are well-posed for linear(ized) MHD equations. For nonlinear MHD problems, we present a simple approach exploiting the proposed linear discretizations by using a Picard iteration. The beauty of this approach is that the divergence-free and $$\Hsp\LRp{div}$$-conforming properties of the velocity and magnetic fields are automatically carried over for nonlinear MHD equations. We study the accuracy and convergence of our E-HDG method for both linear and nonlinear MHD cases through various numerical experiments, including two- and three-dimensional problems with smooth and singular solutions. The numerical examples show that the proposed methods are pressure robust, and the divergence of the resulting velocity and magnetic fields is machine zero for both smooth and singular problems.
more »
« less
- PAR ID:
- 10584607
- Publisher / Repository:
- CAMWA
- Date Published:
- Journal Name:
- Computer Methods in Applied Mechanics and Engineering
- Volume:
- 432
- Issue:
- PA
- ISSN:
- 0045-7825
- Page Range / eLocation ID:
- 117415
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We propose a uniform block-diagonal preconditioner for condensed $$H$$(div)-conforming hybridizable discontinuous Galerkin schemes for parameter-dependent saddle point problems, including the generalized Stokes equations and the linear elasticity equations. An optimal preconditioner is obtained for the stiffness matrix on the global velocity/displacement space via the auxiliary space preconditioning technique (Xu (1994) The Auxiliary Space Method and Optimal Multigrid Preconditioning Techniques for Unstructured Grids, vol. 56. International GAMM-Workshop on Multi-level Methods (Meisdorf), pp. 215–235). A spectrally equivalent approximation to the Schur complement on the element-wise constant pressure space is also constructed, and an explicit computable exact inverse is obtained via the Woodbury matrix identity. Finally, the numerical results verify the robustness of our proposed preconditioner with respect to model parameters and mesh size.more » « less
-
This work proposes a unified hp-adaptivity framework for hybridized discontinuous Galerkin (HDG) method for a large class of partial differential equations (PDEs) of Friedrichs’ type. In particular, we present unified hp-HDG formulations for abstract one-field and two-field structures and prove their well-posedness. In order to handle non-conforming interfaces we simply take advantage of HDG built-in mortar structures. With split-type mortars and the approximation space of trace, a numerical flux can be derived via Godunov approach and be naturally employed without any additional treatment. As a consequence, the proposed formulations are parameter-free. We perform several numerical experiments for time-independent and linear PDEs including elliptic, hyperbolic, and mixed-type to verify the proposed unified hp-formulations and demonstrate the effectiveness of hp-adaptation. Two adaptivity criteria are considered: one is based on a simple and fast error indicator, while the other is rigorous but more expensive using an adjoint-based error estimate. The numerical results show that these two approaches are comparable in terms of convergence rate even for problems with strong gradients, discontinuities, and singularities.more » « less
-
Abstract We introduce two new lowest order methods, a mixed method, and a hybrid discontinuous Galerkin method, for the approximation of incompressible flows. Both methods use divergence-conforming linear Brezzi–Douglas–Marini space for approximating the velocity and the lowest order Raviart–Thomas space for approximating the vorticity. Our methods are based on the physically correct viscous stress tensor of the fluid, involving the symmetric gradient of velocity (rather than the gradient), provide exactly divergence-free discrete velocity solutions, and optimal error estimates that are also pressure robust. We explain how the methods are constructed using the minimal number of coupling degrees of freedom per facet. The stability analysis of both methods are based on a Korn-like inequality for vector finite elements with continuous normal component. Numerical examples illustrate the theoretical findings and offer comparisons of condition numbers between the two new methods.more » « less
-
Surface Stokes and Navier–Stokes equations are used to model fluid flow on surfaces. They have attracted significant recent attention in the numerical analysis literature because approximation of their solutions poses significant challenges not encountered in the Euclidean context. One challenge comes from the need to simultaneously enforce tangentiality and $H^1$ conformity (continuity) of discrete vector fields used to approximate solutions in the velocity-pressure formulation. Existing methods in the literature all enforce one of these two constraints weakly either by penalization or by use of Lagrange multipliers. Missing so far is a robust and systematic construction of surface Stokes finite element spaces which employ nodal degrees of freedom, including MINI, Taylor–Hood, Scott–Vogelius, and other composite elements which can lead to divergence-conforming or pressure-robust discretizations. In this paper we construct surface MINI spaces whose velocity fields are tangential. They are not $H^1$-conforming, but do lie in $H(div)$ and do not require penalization to achieve optimal convergence rates. We prove stability and optimal-order energy-norm convergence of the method and demonstrate optimal-order convergence of the velocity field in $$L_2$$ via numerical experiments. The core advance in the paper is the construction of nodal degrees of freedom for the velocity field. This technique also may be used to construct surface counterparts to many other standard Euclidean Stokes spaces, and we accordingly present numerical experiments indicating optimal-order convergence of nonconforming tangential surface Taylor–Hood elements.more » « less
An official website of the United States government
