skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
We prove a new generalization bound that shows for any class of linear predictors in Gaussian space, the Rademacher complexity of the class and the training error under any continuous loss ℓ can control the test error under all Moreau envelopes of the loss ℓ . We use our finite-sample bound to directly recover the “optimistic rate” of Zhou et al. (2021) for linear regression with the square loss, which is known to be tight for minimal ℓ2-norm interpolation, but we also handle more general settings where the label is generated by a potentially misspecified multi-index model. The same argument can analyze noisy interpolation of max-margin classifiers through the squared hinge loss, and establishes consistency results in spiked-covariance settings. More generally, when the loss is only assumed to be Lipschitz, our bound effectively improves Talagrand’s well-known contraction lemma by a factor of two, and we prove uniform convergence of interpolators (Koehler et al. 2021) for all smooth, non-negative losses. Finally, we show that application of our generalization bound using localized Gaussian width will generally be sharp for empirical risk minimizers, establishing a non-asymptotic Moreau envelope theory  more » « less
Award ID(s):
2113426
PAR ID:
10423426
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of spherical Gaussian Mixture models with 𝑘≥3 components when the components are well separated. A fundamental previous result established that separation of Ω(log𝑘‾‾‾‾‾√) is necessary and sufficient for identifiability of the parameters with \textit{polynomial} sample complexity (Regev and Vijayaraghavan, 2017). In the same context, we show that 𝑂̃ (𝑘𝑑/𝜖2) samples suffice for any 𝜖≲1/𝑘, closing the gap from polynomial to linear, and thus giving the first optimal sample upper bound for the parameter estimation of well-separated Gaussian mixtures. We accomplish this by proving a new result for the Expectation-Maximization (EM) algorithm: we show that EM converges locally, under separation Ω(log𝑘‾‾‾‾‾√). The previous best-known guarantee required Ω(𝑘‾‾√) separation (Yan, et al., 2017). Unlike prior work, our results do not assume or use prior knowledge of the (potentially different) mixing weights or variances of the Gaussian components. Furthermore, our results show that the finite-sample error of EM does not depend on non-universal quantities such as pairwise distances between means of Gaussian components. 
    more » « less
  2. In this work, we revisit the generalization error of stochastic mirror descent for quadratically bounded losses studied in Telgarsky (2022). Quadratically bounded losses is a broad class of loss functions, capturing both Lipschitz and smooth functions, for both regression and classification problems. We study the high probability generalization for this class of losses on linear predictors in both realizable and non-realizable cases when the data are sampled IID or from a Markov chain. The prior work relies on an intricate coupling argument between the iterates of the original problem and those projected onto a bounded domain. This approach enables blackbox application of concentration inequalities, but also leads to suboptimal guarantees due in part to the use of a union bound across all iterations. In this work, we depart significantly from the prior work of Telgarsky (2022), and introduce a novel approach for establishing high probability generalization guarantees. In contrast to the prior work, our work directly analyzes the moment generating function of a novel supermartingale sequence and leverages the structure of stochastic mirror descent. As a result, we obtain improved bounds in all aforementioned settings. Specifically, in the realizable case and non-realizable case with light-tailed sub-Gaussian data, we improve the bounds by a $$\log T$$ factor, matching the correct rates of $1/T$ and $$1/\sqrt{T}$$, respectively. In the more challenging case of heavy-tailed polynomial data, we improve the existing bound by a $$\mathrm{poly}\ T$$ factor. 
    more » « less
  3. In this work, we revisit the generalization error of stochastic mirror descent for quadratically bounded losses studied in Telgarsky (2022). Quadratically bounded losses is a broad class of loss functions, capturing both Lipschitz and smooth functions, for both regression and classification problems. We study the high probability generalization for this class of losses on linear predictors in both realizable and non-realizable cases when the data are sampled IID or from a Markov chain. The prior work relies on an intricate coupling argument between the iterates of the original problem and those projected onto a bounded domain. This approach enables blackbox application of concentration inequalities, but also leads to suboptimal guarantees due in part to the use of a union bound across all iterations. In this work, we depart significantly from the prior work of Telgarsky (2022), and introduce a novel approach for establishing high probability generalization guarantees. In contrast to the prior work, our work directly analyzes the moment generating function of a novel supermartingale sequence and leverages the structure of stochastic mirror descent. As a result, we obtain improved bounds in all aforementioned settings. Specifically, in the realizable case and non-realizable case with light-tailed sub-Gaussian data, we improve the bounds by a $$\log T$$ factor, matching the correct rates of $1/T$ and $$1/\sqrt{T}$$, respectively. In the more challenging case of heavy-tailed polynomial data, we improve the existing bound by a $$\mathrm{poly}\ T$$ factor. 
    more » « less
  4. We study the generalization of two-layer ReLU neural networks in a univariate nonparametric regression problem with noisy labels. This is a problem where kernels (\emph{e.g.} NTK) are provably sub-optimal and benign overfitting does not happen, thus disqualifying existing theory for interpolating (0-loss, global optimal) solutions. We present a new theory of generalization for local minima that gradient descent with a constant learning rate can \emph{stably} converge to. We show that gradient descent with a fixed learning rate η can only find local minima that represent smooth functions with a certain weighted \emph{first order total variation} bounded by 1/η−1/2+O˜(σ+MSE‾‾‾‾‾√) where σ is the label noise level, MSE is short for mean squared error against the ground truth, and O˜(⋅) hides a logarithmic factor. Under mild assumptions, we also prove a nearly-optimal MSE bound of O˜(n−4/5) within the strict interior of the support of the n data points. Our theoretical results are validated by extensive simulation that demonstrates large learning rate training induces sparse linear spline fits. To the best of our knowledge, we are the first to obtain generalization bound via minima stability in the non-interpolation case and the first to show ReLU NNs without regularization can achieve near-optimal rates in nonparametric regression. 
    more » « less
  5. Stochastic Gradient Descent (SGD) based methods have been widely used for training large-scale machine learning models that also generalize well in practice. Several explanations have been offered for this generalization performance, a prominent one being algorithmic stability Hardt et al [2016]. However, there are no known examples of smooth loss functions for which the analysis can be shown to be tight. Furthermore, apart from properties of the loss function, data distribution has also been shown to be an important factor in generalization performance. This raises the question: is the stability analysis of Hardt et al [2016] tight for smooth functions, and if not, for what kind of loss functions and data distributions can the stability analysis be improved? In this paper we first settle open questions regarding tightness of bounds in the data-independent setting: we show that for general datasets, the existing analysis for convex and strongly-convex loss functions is tight, but it can be improved for non-convex loss functions. Next, we give novel and improved data-dependent bounds: we show stability upper bounds for a large class of convex regularized loss functions, with negligible regularization parameters, and improve existing data-dependent bounds in the non-convex setting. We hope that our results will initiate further efforts to better understand the data-dependent setting under non-convex loss functions, leading to an improved understanding of the generalization abilities of deep networks. 
    more » « less