skip to main content


Title: Leveraging genomic diversity for discovery in an electronic health record linked biobank: the UCLA ATLAS Community Health Initiative
Abstract Background Large medical centers in urban areas, like Los Angeles, care for a diverse patient population and offer the potential to study the interplay between genetic ancestry and social determinants of health. Here, we explore the implications of genetic ancestry within the University of California, Los Angeles (UCLA) ATLAS Community Health Initiative—an ancestrally diverse biobank of genomic data linked with de-identified electronic health records (EHRs) of UCLA Health patients ( N =36,736). Methods We quantify the extensive continental and subcontinental genetic diversity within the ATLAS data through principal component analysis, identity-by-descent, and genetic admixture. We assess the relationship between genetically inferred ancestry (GIA) and >1500 EHR-derived phenotypes (phecodes). Finally, we demonstrate the utility of genetic data linked with EHR to perform ancestry-specific and multi-ancestry genome and phenome-wide scans across a broad set of disease phenotypes. Results We identify 5 continental-scale GIA clusters including European American (EA), African American (AA), Hispanic Latino American (HL), South Asian American (SAA) and East Asian American (EAA) individuals and 7 subcontinental GIA clusters within the EAA GIA corresponding to Chinese American, Vietnamese American, and Japanese American individuals. Although we broadly find that self-identified race/ethnicity (SIRE) is highly correlated with GIA, we still observe marked differences between the two, emphasizing that the populations defined by these two criteria are not analogous. We find a total of 259 significant associations between continental GIA and phecodes even after accounting for individuals’ SIRE, demonstrating that for some phenotypes, GIA provides information not already captured by SIRE. GWAS identifies significant associations for liver disease in the 22q13.31 locus across the HL and EAA GIA groups (HL p -value=2.32×10 −16 , EAA p -value=6.73×10 −11 ). A subsequent PheWAS at the top SNP reveals significant associations with neurologic and neoplastic phenotypes specifically within the HL GIA group. Conclusions Overall, our results explore the interplay between SIRE and GIA within a disease context and underscore the utility of studying the genomes of diverse individuals through biobank-scale genotyping linked with EHR-based phenotyping.  more » « less
Award ID(s):
1943497
NSF-PAR ID:
10423495
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Date Published:
Journal Name:
Genome Medicine
Volume:
14
Issue:
1
ISSN:
1756-994X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tobacco use is a major risk factor for many diseases and is heavily influenced by environmental factors with significant underlying genetic contributions. Here, we evaluated the predictive performance, risk stratification, and potential systemic health effects of tobacco use disorder (TUD) predisposing germline variants using a European- ancestry-derived polygenic score (PGS) in 24,202 participants from the multi-ancestry, hospital-based UCLA ATLAS biobank. Among genetically inferred ancestry groups (GIAs), TUD-PGS was significantly associated with TUD in European American (EA) (OR: 1.20, CI: [1.16, 1.24]), Hispanic/Latin American (HL) (OR:1.19, CI: [1.11, 1.28]), and East Asian American (EAA) (OR: 1.18, CI: [1.06, 1.31]) GIAs but not in African American (AA) GIA (OR: 1.04, CI: [0.93, 1.17]). Similarly, TUD-PGS offered strong risk stratification across PGS quantiles in EA and HL GIAs and inconsistently in EAA and AA GIAs. In a cross-ancestry phenome-wide association meta-analysis, TUD-PGS was associated with cardiometabolic, respiratory, and psychiatric phecodes (17 phecodes atP < 2.7E-05). In individuals with no history of smoking, the top TUD-PGS associations with obesity and alcohol-related disorders (P = 3.54E-07, 1.61E-06) persist. Mendelian Randomization (MR) analysis provides evidence of a causal association between adiposity measures and tobacco use. Inconsistent predictive performance of the TUD-PGS across GIAs motivates the inclusion of multiple ancestry populations at all levels of genetic research of tobacco use for equitable clinical translation of TUD-PGS. Phenome associations suggest that TUD-predisposed individuals may require comprehensive tobacco use prevention and management approaches to address underlying addictive tendencies.

     
    more » « less
  2. Abstract Inference of clinical phenotypes is a fundamental task in precision medicine, and has therefore been heavily investigated in recent years in the context of electronic health records (EHR) using a large arsenal of machine learning techniques, as well as in the context of genetics using polygenic risk scores (PRS). In this work, we considered the epigenetic analog of PRS, methylation risk scores (MRS), a linear combination of methylation states. We measured methylation across a large cohort ( n  = 831) of diverse samples in the UCLA Health biobank, for which both genetic and complete EHR data are available. We constructed MRS for 607 phenotypes spanning diagnoses, clinical lab tests, and medication prescriptions. When added to a baseline set of predictive features, MRS significantly improved the imputation of 139 outcomes, whereas the PRS improved only 22 (median improvement for methylation 10.74%, 141.52%, and 15.46% in medications, labs, and diagnosis codes, respectively, whereas genotypes only improved the labs at a median increase of 18.42%). We added significant MRS to state-of-the-art EHR imputation methods that leverage the entire set of medical records, and found that including MRS as a medical feature in the algorithm significantly improves EHR imputation in 37% of lab tests examined (median R 2 increase 47.6%). Finally, we replicated several MRS in multiple external studies of methylation (minimum p -value of 2.72 × 10 −7 ) and replicated 22 of 30 tested MRS internally in two separate cohorts of different ethnicity. Our publicly available results and weights show promise for methylation risk scores as clinical and scientific tools. 
    more » « less
  3. Emerging large-scale biobanks pairing genotype data with phenotype data present new opportunities to prioritize shared genetic associations across multiple phenotypes for molecular validation. Past research, by our group and others, has shown gene-level tests of association produce biologically interpretable characterization of the genetic architecture of a given phenotype. Here, we present a new method, Ward clustering to identify Internal Node branch length outliers using Gene Scores (WINGS), for identifying shared genetic architecture among multiple phenotypes. The objective of WINGS is to identify groups of phenotypes, or “clusters,” sharing a core set of genes enriched for mutations in cases. We validate WINGS using extensive simulation studies and then combine gene-level association tests with WINGS to identify shared genetic architecture among 81 case-control and seven quantitative phenotypes in 349,468 European-ancestry individuals from the UK Biobank. We identify eight prioritized phenotype clusters and recover multiple published gene-level associations within prioritized clusters. 
    more » « less
  4. Abstract

    Tourette Syndrome (TS) is a complex neurodevelopmental disorder characterized by vocal and motor tics lasting more than a year. It is highly polygenic in nature with both rare and common previously associated variants. Epidemiological studies have shown TS to be correlated with other phenotypes, but large-scale phenome wide analyses in biobank level data have not been performed to date. In this study, we used the summary statistics from the latest meta-analysis of TS to calculate the polygenic risk score (PRS) of individuals in the UK Biobank data and applied a Phenome Wide Association Study (PheWAS) approach to determine the association of disease risk with a wide range of phenotypes. A total of 57 traits were found to be significantly associated with TS polygenic risk, including multiple psychosocial factors and mental health conditions such as anxiety disorder and depression. Additional associations were observed with complex non-psychiatric disorders such as Type 2 diabetes, heart palpitations, and respiratory conditions. Cross-disorder comparisons of phenotypic associations with genetic risk for other childhood-onset disorders (e.g.: attention deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and obsessive-compulsive disorder [OCD]) indicated an overlap in associations between TS and these disorders. ADHD and ASD had a similar direction of effect with TS while OCD had an opposite direction of effect for all traits except mental health factors. Sex-specific PheWAS analysis identified differences in the associations with TS genetic risk between males and females. Type 2 diabetes and heart palpitations were significantly associated with TS risk in males but not in females, whereas diseases of the respiratory system were associated with TS risk in females but not in males. This analysis provides further evidence of shared genetic and phenotypic architecture of different complex disorders.

     
    more » « less
  5. Electronic health records (EHR) are not designed for population‐based research, but they provide easy and quick access to longitudinal health information for a large number of individuals. Many statistical methods have been proposed to account for selection bias, missing data, phenotyping errors, or other problems that arise in EHR data analysis. However, addressing multiple sources of bias simultaneously is challenging. We developed a methodological framework (R package,SAMBA) for jointly handling both selection bias and phenotype misclassification in the EHR setting that leverages external data sources. These methods assume factors related to selection and misclassification are fully observed, but these factors may be poorly understood and partially observed in practice. As a follow‐up to the methodological work, we demonstrate how to apply these methods for two real‐world case studies, and we evaluate their performance. In both examples, we use individual patient‐level data collected through the University of Michigan Health System and various external population‐based data sources. In case study (a), we explore the impact of these methods on estimated associations between gender and cancer diagnosis. In case study (b), we compare corrected associations between previously identified genetic loci and age‐related macular degeneration with gold standard external summary estimates. These case studies illustrate how to utilize diverse auxiliary information to achieve less biased inference in EHR‐based research.

     
    more » « less