This content will become publicly available on May 12, 2024
- Award ID(s):
- 1849963
- NSF-PAR ID:
- 10423592
- Date Published:
- Journal Name:
- Geological Society of America Bulletin
- ISSN:
- 0016-7606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We describe, interpret, and establish a stratotype for the Frenchman Mountain Dolostone (FMD), a new Cambrian stratigraphic unit that records key global geochemical and climate signals and is well exposed throughout the Grand Canyon and central Basin and Range, USA. This flat-topped carbonate platform deposit is the uppermost unit of the Tonto Group, replacing the informally named “undifferentiated dolomites.” The unit records two global chemostratigraphic events—the Drumian Carbon Isotope Excursion (DICE), when δ13Ccarb (refers to “marine carbonate rocks”) values in the FMD dropped to −2.7‰, and the Steptoean Positive Carbon Isotope Excursion (SPICE), when the values rose to +3.5‰. The formation consists of eight lithofacies deposited in shallow subtidal to peritidal paleoenvironments. At its stratotype at Frenchman Mountain, Nevada, the FMD is 371 m thick. Integration of regional trilobite biostratigraphy and geochronology with new stratigraphy and sedimentology of the FMD, together with new δ13Ccarb chemostratigraphy for the entire Cambrian succession at Frenchman Mountain, illustrates that the FMD spans ~7.2 m.y., from Miaolingian (lower Drumian, Bolaspidella Zone) to Furongian (Paibian, Dicanthopyge Zone) time. To the west, the unit correlates with most of the Banded Mountain Member of the ~1100-m-thick Bonanza King Formation. To the east, at Grand Canyon’s Palisades of the Desert, the FMD thins to 8 m due to pre–Middle Devonian erosion that cut progressively deeper cratonward. Portions of the FMD display visually striking, meter-scale couplets of alternating dark- and light-colored peritidal facies, while other portions consist of thick intervals of a single peritidal or shallow subtidal facies. Statistical analysis of the succession of strata in the stratotype section, involving Markov order and runs order analyses, yields no evidence of cyclicity or other forms of order. Autocyclic processes provide the simplest mechanism to have generated the succession of facies observed in the FMD.more » « less
-
null (Ed.)Abstract Trilobites appeared and diversified rapidly in the Cambrian, but it is debated as to whether their radiations and extinctions were globally synchronous or geographically restricted and diachronous. The end of the early Cambrian is a classic example—it has traditionally been defined by the extinction of olenellid and redlichiid trilobites and the appearance of paradoxidid trilobites. Here we integrate the global biostratigraphy of these three trilobite groups with high-precision tuff and tandem detrital zircon U-Pb age constraints to falsify prior models for global synchronicity of these events. For the first time, we demonstrate that olenellid trilobites in Laurentia went extinct at least 3 Ma after the first appearance of paradoxidids in Avalonia and West Gondwana (ca. 509 Ma). They also disappeared before the extinction of redlichiids and prior to the base of the Miaolingian at ca. 506 Ma in South China. This indicates that these three trilobite groups (paradoxidids, olenellids, and redlichiids) and their associated biotas overlapped in time for nearly 40% of Cambrian Epoch 2, Age 4. Implications of this chronological overlap are: (1) trilobite transitions were progressive and geographically mediated rather than globally synchronous; and (2) paleontological databases underestimate the diversity of the early Cambrian. This ∼3 Ma diachroneity, at a critical time in the early evolution of animals, also impacts chemostratigraphic and paleoclimatic data sets that are tied to trilobite biostratigraphy and that collectively underpin our understanding of the Cambrian Earth system.more » « less
-
Abstract The later Cambrian Steptoean Positive Carbon Isotope Excursion (SPICE) event was an episode marked by pronounced changes to the global biogeochemical cycles of carbon and sulfur and significant extinctions on several paleocontinents including Laurentia (North America). While the exact cause(s) of these events remains debated, various lines of evidence suggest an increase in the areal extent of anoxia at the seafloor was a likely feature. Here, we explore whether changes in local oxygenation accompanied the onset of the
SPICE in southern Laurentia using cores of the Nolichucky and Eau Claire Formations from Ohio and Kentucky,USA , that represent a transect into the Rome Trough/Conasauga intrashelf basin. At our study locations, the initial positive δ13C shift of theSPICE occurs in conjunction with increases in the abundance and δ34S of sedimentary pyrite. Further local redox conditions, tracked using iron speciation analysis, indicate anoxic conditions developed at the two proximal locations after the start of the paired isotopic excursions. However, the location near the basin center shows no indication for anoxia before or during the onset of theSPICE . While this signal may reflect the structure of local redox conditions within the basin, with the development of anoxia limited to the basin margins, we argue that authigenic iron enrichments were muted by sedimentary dilution and/or the enhanced authigenesis of iron‐bearing sheet silicates near the basin center, masking the signal for anoxia there. Regardless of the areal extent of anoxia within the basin, in either scenario the timing of the development of anoxic bottom waters was concurrent with local faunal turnover, features broadly consistent with a global expansion of anoxia playing a role in driving the isotopic trends and extinctions observed during the event. -
Abstract The Steptoean Positive Isotopic Carbon Excursion (SPICE) is a prominent +4–5‰ shift in the Cambrian δ13C record used for global chronostratigraphic correlation. The onset of this excursion is traditionally placed at the base of the Pterocephaliid trilobite biomere (base of the Furongian Series). Recent studies have documented local controls on the expression of the SPICE and emphasize the need for chronostratigraphic standards for these complex biogeochemical signals. We build upon prior work in western Laurentia by integrating δ13C and biostratigraphy with high-precision isotope dilution U-Pb detrital zircon maximum depositional ages that are coincident with the onset, peak, and falling limb of the SPICE. Our study provides the first useful numerical age constraint for the onset of the SPICE and the Laurentian trilobite biozones and requires revision of the late Cambrian geologic time scale boundaries by several million years.more » « less
-
Cambrian–Devonian sedimentary rocks of the northern Canadian Cordillera record both the establishment and demise of the Great American Carbonate Bank, a widespread carbonate platform system that fringed the ancestral continental margins of North America (Laurentia). Here, we present a new examination of the deep-water Road River Group of the Richardson Mountains, Yukon, Canada, which was deposited in an intra-platformal embayment or seaway within the Great American Carbonate Bank called the Richardson trough. Eleven detailed stratigraphic sections through the Road River Group along the upper canyon of the Peel River are compiled and integrated with geological mapping, facies analysis, carbonate and organic carbon isotope chemostratigraphy, and new biostratigraphic results to formalize four new formations within the type area of the Richardson Mountains (Cronin, Mount Hare, Tetlit, and Vittrekwa). We recognize nine mixed carbonate and siliciclastic deep-water facies associations in the Road River Group and propose these strata were deposited in basin-floor to slope environments. New biostratigraphic data suggest the Road River Group spans the late Cambrian (Furongian) – Middle Devonian (Eifelian), and new chemostratigraphic data record multiple global carbon isotopic events, including the late Cambrian Steptoean positive carbon isotope excursion, the Late Ordovician Guttenberg excursion, the Silurian Aeronian, Valgu, Mulde (mid-Homerian), Ireviken (early Sheinwoodian), and Lau excursions, and the Early Devonian Klonk excursion. Together, these new data not only help clarify nomenclatural debate centered around the Road River Group, but also provide critical new sedimentological, biostratigraphic, and isotopic data for these widely distributed rocks of the northern Canadian Cordillera.more » « less