skip to main content


Title: Evidence for the development of local anoxia during the Cambrian SPICE event in eastern North America
Abstract

The later Cambrian Steptoean Positive Carbon Isotope Excursion (SPICE) event was an episode marked by pronounced changes to the global biogeochemical cycles of carbon and sulfur and significant extinctions on several paleocontinents including Laurentia (North America). While the exact cause(s) of these events remains debated, various lines of evidence suggest an increase in the areal extent of anoxia at the seafloor was a likely feature. Here, we explore whether changes in local oxygenation accompanied the onset of theSPICEin southern Laurentia using cores of the Nolichucky and Eau Claire Formations from Ohio and Kentucky,USA, that represent a transect into the Rome Trough/Conasauga intrashelf basin. At our study locations, the initial positive δ13C shift of theSPICEoccurs in conjunction with increases in the abundance and δ34S of sedimentary pyrite. Further local redox conditions, tracked using iron speciation analysis, indicate anoxic conditions developed at the two proximal locations after the start of the paired isotopic excursions. However, the location near the basin center shows no indication for anoxia before or during the onset of theSPICE. While this signal may reflect the structure of local redox conditions within the basin, with the development of anoxia limited to the basin margins, we argue that authigenic iron enrichments were muted by sedimentary dilution and/or the enhanced authigenesis of iron‐bearing sheet silicates near the basin center, masking the signal for anoxia there. Regardless of the areal extent of anoxia within the basin, in either scenario the timing of the development of anoxic bottom waters was concurrent with local faunal turnover, features broadly consistent with a global expansion of anoxia playing a role in driving the isotopic trends and extinctions observed during the event.

 
more » « less
NSF-PAR ID:
10461153
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Geobiology
Volume:
17
Issue:
4
ISSN:
1472-4677
Page Range / eLocation ID:
p. 381-400
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Ediacaran Doushantuo Formation in South China is a prime target for geobiological investigation because it offers opportunities to integrate chemostratigraphic and paleobiological data. Previous studies were mostly focused on successions in shallow‐water shelf facies, but data from deep‐water successions are needed to fully understand basinal redox structures. Here, we report δ13Ccarb, δ13Corg, δ34Spyr, δ34SCAS, and δ15Nseddata from a drill core of the fossiliferous Lantian Formation, which is a deep‐water equivalent of the Doushantuo Formation. Our data confirm a large (>10‰) spatial gradient in δ13Ccarbin the lower Doushantuo/Lantian formations, but this gradient is probably due to the greater sensitivity of carbonate‐poor deep‐water sediments to isotopic mixing with13C‐depleted carbonate cements. A pronounced negative δ13Ccarbexcursion (EN3) in the upper Doushantuo/Lantian formations, however, is spatially consistent and may be an equivalent of the Shuram excursion. δ34Spyris more negative in deeper‐water facies than in shallow‐water facies, particularly in the lower Doushantuo/Lantian formations, and this spatial pattern is interpreted as evidence for ocean redox stratification: Pyrite precipitated in euxinic deep waters has lower δ34Spyrthan that formed within shallow‐water sediments. The Lantian Formation was probably deposited in oscillating oxic and euxinic conditions. Euxinic black shales have higherTOCandTNcontents, but lower δ34Spyrand δ15Nsedvalues. In euxinic environments, pyrite was predominantly formed in the water column and organic nitrogen was predominantly derived from nitrogen fixation orNH4+assimilation because of quantitative denitrification, resulting in lower δ34Spyrand δ15Nsedvalues. Benthic macroalgae and putative animals occur exclusively in euxinic black shales. If preserved in situ, these organisms must have lived in brief oxic episodes punctuating largely euxinic intervals, only to be decimated and preserved when the local environment switched back to euxinia again. Thus, taphonomy and ecology were the primary factors controlling the stratigraphic distribution of macrofossils in the Lantian Formation.

     
    more » « less
  2. Abstract

    Uranium isotopes (238U/235U) have been used widely over the last decade as a global proxy for marine redox conditions. The largest isotopic fractionations in the system occur during U reduction, removal, and burial. Applying this basic framework, global U isotope mass balance models have been used to predict the extent of ocean floor anoxia during key intervals throughout Earth's history. However, there are currently minimal constraints on the isotopic fractionation that occurs during reduction and burial in anoxic and iron‐rich (ferruginous) aquatic systems, despite the consensus that ferruginous conditions are thought to have been widespread through the majority of our planet's history. Here we provide the first exploration of δ238U values in natural ferruginous settings. We measured δ238U in sediments from two modern ferruginous lakes (Brownie Lake and Lake Pavin), the water column of Brownie Lake, and sedimentary rocks from the Silurian‐Devonian boundary that were deposited under ferruginous conditions. Additionally, we provide new δ238U data from core top sediments from anoxic but nonsulfidic settings in the Peru Margin oxygen minimum zone. We find that δ238U values from sediments deposited in all of these localities are highly variable but on average are indistinguishable from adjacent oxic sediments. This forces a reevaluation of the global U isotope mass balance and how U isotope values are used to reconstruct the evolution of the marine redox landscape.

     
    more » « less
  3. Abstract

    The distribution of the short‐lived radionuclide26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions inCO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearingCAIs in the Dominion Range (DOM) 08006 (CO3.0) andDOM08004 (CO3.1) chondrites. All minerals inDOM08006CAIs as well as hibonite, spinel, and pyroxene inDOM08004 are uniformly16O‐rich (Δ17O = −25 to −20‰) but grossite and melilite inDOM08004CAIs are not; Δ17O of grossite and melilite range from ~ −11 to ~0‰ and from ~ −23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial26Al/27Al ratios (26Al/27Al)0is seen, with four having (26Al/27Al)0≤1.1 × 10−5and six having (26Al/27Al)0≥3.7 × 10−5. Five of the26Al‐richCAIs have (26Al/27Al)0within error of 4.5 × 10−5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10−5given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the26Al‐poorCAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in theDOM08006CAIs, as well as spinel, hibonite, and Al‐diopside in theDOM08004CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where theCOgrossite‐bearingCAIs originated. Oxygen isotopic heterogeneity inCAIs fromDOM08004 resulted from exchange between the initially16O‐rich (Δ17O ~−24‰) melilite and grossite and16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on theCOchondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on theCOparent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected mostCAIs in CO ≥3.1 chondrites.

     
    more » « less
  4. The Steptoean Positive Carbon Isotope Excursion (SPICE) event at ca. 497−494 Ma was a major carbon-cycle perturbation of the late Cambrian that coincided with rapid diversity changes among trilobites. Several scenarios (e.g., climatic/oceanic cooling and seawater anoxia) have been proposed to account for an extinction of trilobites at the onset of SPICE, but the exact mechanism remains unclear. Here, we present a chemostratigraphic study of carbonate carbon and carbonate-associated sulfate sulfur isotopes (δ13Ccarb and δ34SCAS) and elemental redox proxies (UEF, MoEF, and Corg/P), augmented by secular trilobite diversity data, from both upper slope (Wangcun) and lower slope (Duibian) successions from the Jiangnan Slope, South China, spanning the Drumian to lower Jiangshanian. Redox data indicate locally/regionally well-oxygenated conditions throughout the SPICE event in both study sections except for low-oxygen (hypoxic) conditions within the rising limb of the SPICE (early-middle Paibian) at Duibian. As in coeval sections globally, the reported δ13Ccarb and δ34SCAS profiles exhibit first-order coupling throughout the SPICE event, reflecting co-burial of organic matter and pyrite controlled by globally integrated marine productivity, organic preservation rates, and shelf hypoxia. Increasing δ34SCAS in the “Early SPICE” interval (late Guzhangian) suggests that significant environmental change (e.g., global-oceanic hypoxia) was under way before the global carbon cycle was markedly affected. Assessment of trilobite range data within a high-resolution biostratigraphic framework for the middle-late Cambrian facilitated re-evaluation of the relationship of the SPICE to contemporaneous biodiversity changes. Trilobite diversity in South China declined during the Early SPICE (corresponding to the End-Marjuman Biomere Extinction, or EMBE, of Laurentia) and at the termination of the SPICE (corresponding to the End-Steptoean Biomere Extinction, or ESBE, of Laurentia), consistent with biotic patterns from other cratons. We infer that oxygen minimum zone and/or shelf hypoxia expanded as a result of locally enhanced productivity due to intensified upwelling following climatic cooling, and that expanded hypoxia played a major role in the EMBE at the onset of SPICE. During the SPICE event, global-ocean ventilation promoted marine biotic recovery, but termination of SPICE-related cooling in the late Paibian may have reduced global-ocean circulation, triggering further redox changes that precipitated the ESBE. Major changes in both marine environmental conditions and trilobite diversity during the late Guzhangian demonstrate that the SPICE event began earlier than the Guzhangian-Paibian boundary, as previously proposed. 
    more » « less
  5. Abstract

    The potent greenhouse gas nitrous oxide (N2O) may have been an important constituent of Earth's atmosphere during Proterozoic (~2.5–0.5 Ga). Here, we tested the hypothesis that chemodenitrification, the rapid reduction of nitric oxide by ferrous iron, would have enhanced the flux of N2O from ferruginous Proterozoic seas. We empirically derived a rate law,, and measured an isotopic site preference of +16‰ for the reaction. Using this empirical rate law, and integrating across an oceanwide oxycline, we found that lownM NOand μM‐lowmMFe2+concentrations could have sustained a sea‐air flux of 100–200 Tg N2O–N year−1, if N2fixation rates were near‐modern and all fixed N2was emitted as N2O. A 1D photochemical model was used to obtain steady‐state atmospheric N2O concentrations as a function of sea‐air N2O flux across the wide range of possiblepO2values (0.001–1PAL). At 100–200 Tg N2O–N year−1and >0.1PALO2, this model yielded low‐ppmv N2O, which would produce several degrees of greenhouse warming at 1.6 ppmvCH4and 320 ppmvCO2. These results suggest that enhanced N2O production in ferruginous seawater via a previously unconsidered chemodenitrification pathway may have helped to fill a Proterozoic “greenhouse gap,” reconciling an ice‐free Mesoproterozoic Earth with a less luminous early Sun. A particularly notable result was that high N2O fluxes at intermediate O2concentrations (0.01–0.1PAL) would have enhanced ozone screening of solarUVradiation. Due to rapid photolysis in the absence of an ozone shield, N2O is unlikely to have been an important greenhouse gas if Mesoproterozoic O2was 0.001PAL. At low O2, N2O might have played a more important role as life's primary terminal electron acceptor during the transition from an anoxic to oxic surface Earth, and correspondingly, from anaerobic to aerobic metabolisms.

     
    more » « less