skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A new approach to the generalized Springer correspondence
The Springer resolution of the nilpotent cone is used to give a geometric construction of the irreducible representations of Weyl groups. Borho and MacPherson obtain the Springer correspondence by applying the decomposition theorem to the Springer resolution, establishing an injective map from the set of irreducible Weyl group representations to simple equivariant perverse sheaves on the nilpotent cone. In this manuscript, we consider a generalization of the Springer resolution using a variety defined by the first author. Our main result shows that in the type A case, applying the decomposition theorem to this map yields all simple perverse sheaves on the nilpotent cone with multiplicity as predicted by Lusztig’s generalized Springer correspondence.  more » « less
Award ID(s):
1954001
PAR ID:
10423629
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transactions of the American Mathematical Society
Volume:
376
Issue:
1069
ISSN:
0002-9947
Page Range / eLocation ID:
3891 to 3918
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We use the Springer correspondence to give a partial characterization of the irre- ducible representations which appear in the Tymoczko dot action of the Weyl group on the cohomology ring of a regular semisimple Hessenberg variety. In type A, we apply these techniques to prove that all irreducible summands which appear in the pushforward of the constant sheaf on the universal Hessenberg family have full support. We also observe that the recent results of Brosnan and Chow, which apply the local invariant cycle theorem to the family of regular Hessenberg varieties in type A, extend to arbitrary Lie type. We use this extension to prove that regular Hessenberg varieties, though not necessarily smooth, always have the “Kahler package.” 
    more » « less
  2. We construct a perverse sheaf related to the the matrix exponential sums investigated by Erdélyi and Tóth [Matrix Kloosterman sums, 2021, arXiv:2109.00762]. As this sheaf appears as a summand of certain tensor product of Kloosterman sheaves, we can establish the exact structure of the cohomology attached to the sums by relating it to the Springer correspondence and using the recursion formula of Erdélyi and Tóth. 
    more » « less
  3. Abstract Kazhdan and Lusztig identified the affine Hecke algebra ℋ with an equivariant$$K$$ K -group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture, i.e., the local Langlands parametrization of irreducible representations of reductive groups over nonarchimedean local fields$$F$$ F with an Iwahori-fixed vector. We apply techniques from derived algebraic geometry to pass from$$K$$ K -theory to Hochschild homology and thereby identify ℋ with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands parameters, thecoherent Springer sheaf. As a result the derived category of ℋ-modules is realized as a full subcategory of coherent sheaves on this stack, confirming expectations from strong forms of the local Langlands correspondence (including recent conjectures of Fargues-Scholze, Hellmann and Zhu). In the case of the general linear group our result allows us to lift the local Langlands classification of irreducible representations to a categorical statement: we construct a full embedding of the derived category of smooth representations of$$\mathrm{GL}_{n}(F)$$ GL n ( F ) into coherent sheaves on the stack of Langlands parameters. 
    more » « less
  4. In this paper we establish Springer correspondence for the symmetric pair $$(\text{SL}(N),\text{SO}(N))$$ using Fourier transform, parabolic induction functor, and a nearby cycle sheaf construction. As an application of our results we see that the cohomology of Hessenberg varieties can be expressed in terms of irreducible representations of Hecke algebras of symmetric groups at $q=-1$ . Conversely, we see that the irreducible representations of Hecke algebras of symmetric groups at $q=-1$ arise in geometry. 
    more » « less
  5. We construct a co- t t -structure on the derived category of coherent sheaves on the nilpotent cone N \mathcal {N} of a reductive group, as well as on the derived category of coherent sheaves on any parabolic Springer resolution. These structures are employed to show that the push-forwards of the “exotic parity objects” (considered by Achar, Hardesty, and Riche [Transform. Groups 24 (2019), pp. 597–657]), along the (classical) Springer resolution, give indecomposable objects inside the coheart of the co- t t -structure on N \mathcal {N} . We also demonstrate how the various parabolic co- t t -structures can be related by introducing an analogue to the usual translation functors. As an application, we give a proof of a scheme-theoretic formulation of the relative Humphreys conjecture on support varieties of tilting modules in type A A for p > h p>h
    more » « less