skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-Way Teleconnections between the Southern Ocean and the Tropical Pacific via a Dynamic Feedback
Abstract Despite substantial global mean warming, surface cooling has occurred in both the tropical eastern Pacific Ocean and the Southern Ocean over the past 40 years, influencing both regional climates and estimates of Earth’s climate sensitivity to rising greenhouse gases. While a tropical influence on the extratropics has been extensively studied in the literature, here we demonstrate that the teleconnection works in the other direction as well, with the southeast Pacific sector of the Southern Ocean exerting a strong influence on the tropical eastern Pacific. Using a slab ocean model, we find that the tropical Pacific sea surface temperature (SST) response to an imposed Southern Ocean surface heat flux forcing is sensitive to the longitudinal location of that forcing, suggesting an atmospheric pathway associated with regional dynamics rather than reflecting a zonal-mean energetic constraint. The transient response shows that an imposed Southern Ocean cooling in the southeast Pacific sector first propagates into the tropics by mean-wind advection. Once tropical Pacific SSTs are perturbed, they then drive remote changes to atmospheric circulation in the extratropics that further enhance both Southern Ocean and tropical cooling. These results suggest a mutually interactive two-way teleconnection between the Southern Ocean and tropical Pacific through atmospheric circulations, and highlight potential impacts on the tropics from the extratropical climate changes over the instrumental record and in the future.  more » « less
Award ID(s):
1752796
PAR ID:
10423639
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
19
ISSN:
0894-8755
Page Range / eLocation ID:
6267 to 6282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In the past 40 years, the global annual mean surface temperature has experienced a nonuniform warming, differing from the spatially uniform warming simulated by the forced responses of large multimodel ensembles to anthropogenic forcing. Rather, it exhibits significant asymmetry between the Arctic and Antarctic, with intermittent and spatially varying warming trends along the Northern Hemisphere (NH) midlatitudes and a slight cooling in the tropical eastern Pacific. In particular, this “wavy” pattern of temperature changes over the NH midlatitudes features strong cooling over Eurasia in boreal winter. Here, we show that these nonuniform features of surface temperature changes are likely tied together by tropical eastern Pacific sea surface temperatures (SSTs), via a global atmospheric teleconnection. Using six reanalyses, we find that this teleconnection can be consistently obtained as a leading circulation mode in the past century. This tropically driven teleconnection is associated with a Pacific SST pattern resembling the interdecadal Pacific oscillation (IPO), and hereafter referred to as the IPO-related bipolar teleconnection (IPO-BT). Further, two paleo-reanalysis reconstruction datasets show that the IPO-BT is a robust recurrent mode over the past 400 and 2000 years. The IPO-BT mode may thus serve as an important internal mode that regulates high-latitude climate variability on multidecadal time scales, favoring a warming (cooling) episode in the Arctic accompanied by cooling (warming) over Eurasia and the Southern Ocean (SO). Thus, the spatial nonuniformity of recent surface temperature trends may be partially explained by the enhanced appearance of the IPO-BT mode by a transition of the IPO toward a cooling phase in the eastern Pacific in the past decades. 
    more » « less
  2. null (Ed.)
    Walker circulation variability and associated zonal shifts in the heating of the tropical atmosphere have far-reaching global impacts well into high latitudes. Yet the reversed high latitude–to–Walker circulation teleconnection is not fully understood. Here, we reveal the dynamical pathways of this teleconnection across different components of the climate system using a hierarchy of climate model simulations. In the fully coupled system with ocean circulation adjustments, the Walker circulation strengthens in response to extratropical radiative cooling of either hemisphere, associated with the upwelling of colder subsurface water in the eastern equatorial Pacific. By contrast, in the absence of ocean circulation adjustments, the Walker circulation response is sensitive to the forcing hemisphere, due to the blocking effect of the northward-displaced climatological intertropical convergence zone and shortwave cloud radiative effects. Our study implies that energy biases in the extratropics can cause pronounced changes of tropical climate patterns. 
    more » « less
  3. Atmospheric rivers (ARs) are key agents in distributing extratropical precipitation and transporting moisture poleward. Climate models forced by historical anthropogenic forcing suggest an increase in AR activity in the extratropics over the past four decades. However, reanalyses indicate a ~6° to 10° poleward shift of ARs during boreal winter in both hemispheres, featuring a rise along 50°N and 50°S and a decrease along 30°N and 30°S. Our analysis demonstrates that low-frequency sea surface temperature variability in the tropical eastern Pacific exhibits a cooling tendency since 2000 that plays a key role in driving this global AR shift, mostly over extratropical oceans, through a tropical-driven eddy-mean flow feedback. This mechanism also operates on interannual timescales, controlled by the El Niño–Southern Oscillation, and is less pronounced over the Southern Ocean due to weaker eddy activity during austral summer. These highlight the sensitivity of ARs to large-scale circulation changes driven by both internal variability and external forcing in current and upcoming decades. 
    more » « less
  4. Since about 1980, the tropical Pacific has been anomalously cold, while the broader tropics have warmed. This has caused anomalous weather in midlatitudes as well as a reduction in the apparent sensitivity of the climate associated with enhanced low-cloud abundance over the cooler waters of the eastern tropical Pacific. Recent modeling work has shown that cooler temperatures over the Southern Ocean around Antarctica can lead to cooler temperatures over the eastern tropical Pacific. Here we suggest that surface wind anomalies associated with the Antarctic ozone hole can cause cooler temperatures over the Southern Ocean that extend into the tropics. We use the short-term variability of the Southern Annular Mode of zonal wind variability to show an association between surface zonal wind variations over the Southern Ocean, cooling over the Southern Ocean, and cooling in the eastern tropical Pacific. This suggests that the cooling of the eastern tropical Pacific may be associated with the onset of the Antarctic ozone hole. 
    more » « less
  5. Excessive precipitation over the southeastern tropical Pacific is a major common bias that persists through generations of global climate models. While recent studies suggest an overly warm Southern Ocean as the cause, models disagree on the quantitative importance of this remote mechanism in light of ocean circulation feedback. Here, using a multimodel experiment in which the Southern Ocean is radiatively cooled, we show a teleconnection from the Southern Ocean to the tropical Pacific that is mediated by a shortwave subtropical cloud feedback. Cooling the Southern Ocean preferentially cools the southeastern tropical Pacific, thereby shifting the eastern tropical Pacific rainbelt northward with the reduced precipitation bias. Regional cloud locking experiments confirm that the teleconnection efficiency depends on subtropical stratocumulus cloud feedback. This subtropical cloud feedback is too weak in most climate models, suggesting that teleconnections from the Southern Ocean to the tropical Pacific are stronger than widely thought. 
    more » « less